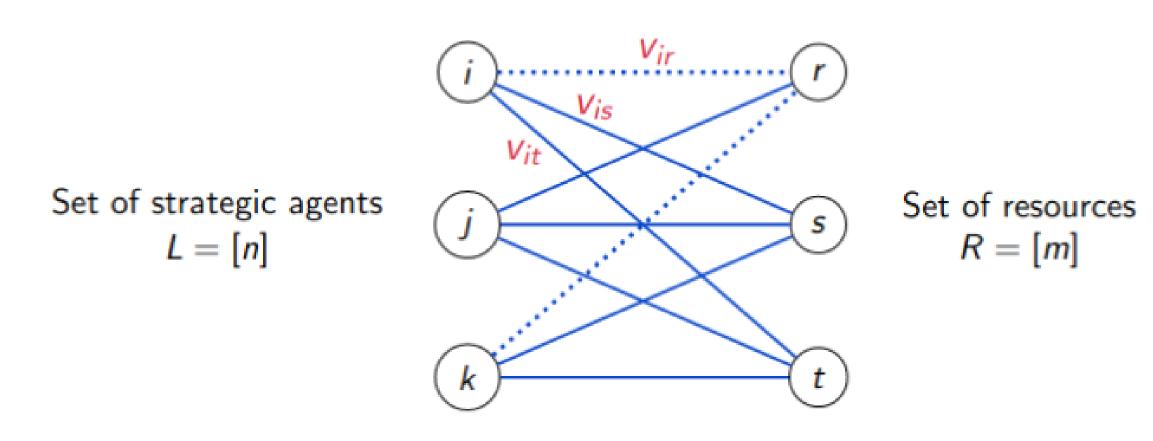
Assignment Mechanisms with Predictions in the Private Graph Model

Riccardo Colini-Baldeschi¹, Sophie Klumper^{2,3}, Guido Schäfer^{2,3}, Artem Tsikiridis²

rickuz@meta.com, {sophie.klumper, guido.schaefer, artem.tsikiridis}@cwi.nl

¹Central Applied Science, Meta, UK ²Networks and Optimization, Centrum Wiskunde & Informatica (CWI), NL ³Institute for Logic, Language and Computation, University of Amsterdam, NL

Bipartite Matching Problem (BMP) in Private Graphs



• The value $v_{ij} \in \mathbb{R}^+$ is public information $\forall i, \forall j$

CWI

Optimal Deterministic Mechanism for BMP (cont.)

Mechanism 0: BOOST

- 1 $M = \emptyset$
- 2 P_i = list of incident edges D_i ordered by decreasing v_{ij} for each $i \in L$

3 while there exists an active agent i do

- 4 i proposes $\theta_{ij} = \theta_{ij}(\gamma, \hat{M})$ to next resource j on their list P_i
- 5 **if** offer θ_{ij} is larger than j's current best offer then
- 6 | *j* rejects their current tentative mate *k* (if any): $M = M \setminus \{(k, j)\}$
- 7 *j* tentatively accepts *i* as their new mate: $M = M \cup \{(i, j)\}$

8 remove (i, j) from proposal list P_i

9 return M

- Each agent *i* has a **private** compatibility set $E_i \subseteq \{i\} \times R$
- Each agent *i* declares a compatibility set $D_i \subseteq \{i\} \times R$
- Given D, we want a strategyproof mechanism $\mathcal{M}(D)=M$ to compute a feasible assignment $M\subseteq D$ of maximum value
- Each agent *i* wants to maximize their utility:

$$u_i(D) = \begin{cases} v_{ij} & \text{if } \exists (i,j) \in \mathcal{M}(D) \cap E_i \\ 0 & \text{otherwise} \end{cases}$$

• A mechanism \mathcal{M} is *strategyproof* if $\forall i \in L$, for any instance, any D_{-i} and any D'_i :

 $u_i(E_i, D_{-i}) \ge u_i(D'_i, D_{-i}).$

 Dughmi and Ghosh [DG10] give a greedy deterministic mechanism that is strategyproof and 2-approximate, and prove it is best possible

BMP in Private Graphs with Predictions

- Additionally, we are given a predicted feasible assignment $\hat{M} \subseteq L \times R$
- Given D, \hat{M} is **perfect** if $v(\hat{M} \cap D) = v(M_D^*)$, with M_D^* the optimal assignment in G[D]
- \mathcal{M} is α -consistent [LV21], $\alpha \geq 1$, if for every instance with a perfect prediction the assignment $M = \mathcal{M}(D)$ satisfies:

 $\alpha \cdot v(M) \ge v(M_D^*)$

• \mathcal{M} is β -robust [LV21], $\beta \geq 1$, if for every instance with an arbitrary prediction, the assignment $M = \mathcal{M}(D)$ satisfies:

We define the **prediction error** $\eta(\mathcal{I}) \in [0, 1]$ of an instance \mathcal{I} as

$$\eta(\mathcal{I}) = 1 - \frac{v(\hat{M} \cap D)}{v(M_D^*)}$$

Theorem

Fix some error parameter $\hat{\eta} \in [0, 1]$. Consider the class of instances of BMP in the private graph model with prediction error at most $\hat{\eta}$. Then, for every confidence parameter $\gamma \ge 1$, BOOST is group-strategyproof and has an approximation guarantee of

$$g(\hat{\eta}, \gamma) = \begin{cases} \frac{1+\gamma}{\gamma(1-\hat{\eta})} & \text{if } \hat{\eta} \leq 1 - \frac{1}{\gamma}, \\ 1+\gamma & \text{otherwise.} \end{cases}$$

In particular, BOOST is $(1 + \frac{1}{\gamma})$ -consistent and $(1 + \gamma)$ -robust, which is best possible.

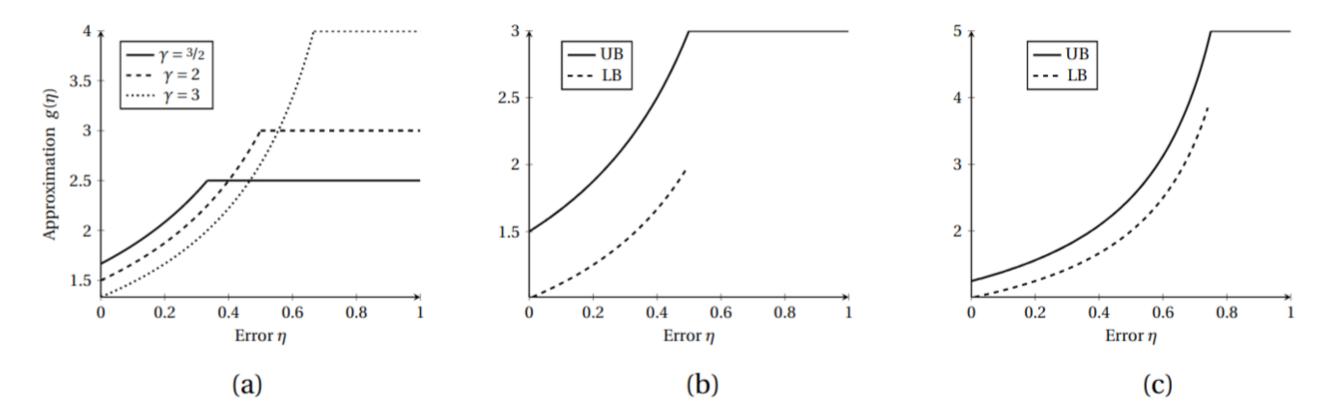


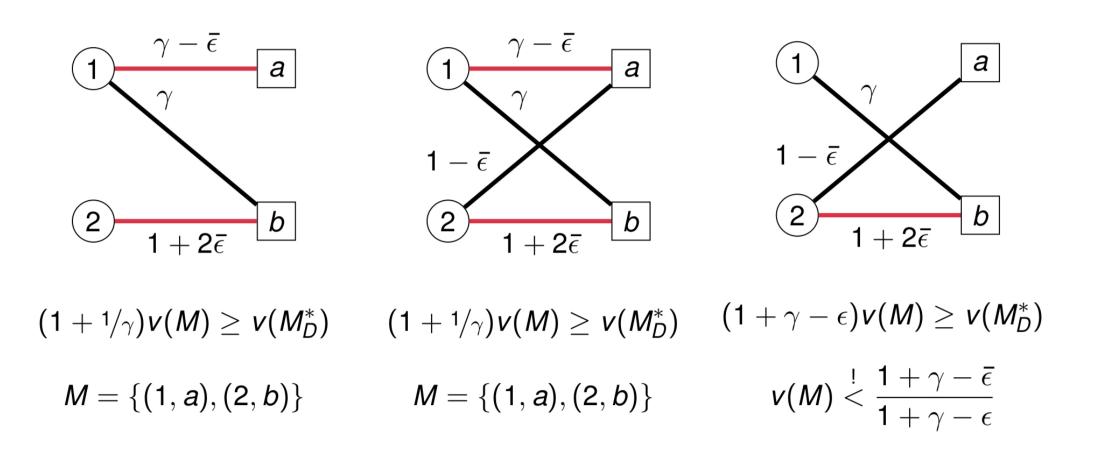
Figure 2: Approximation guarantee $g(\hat{\eta})$ as a function of η . (a) For $\gamma \in \{\frac{3}{2}, 2, 3\}$, (b) upper vs. lower bound for $\gamma = 2$ and (c) upper vs. lower bound for $\gamma = 4$.

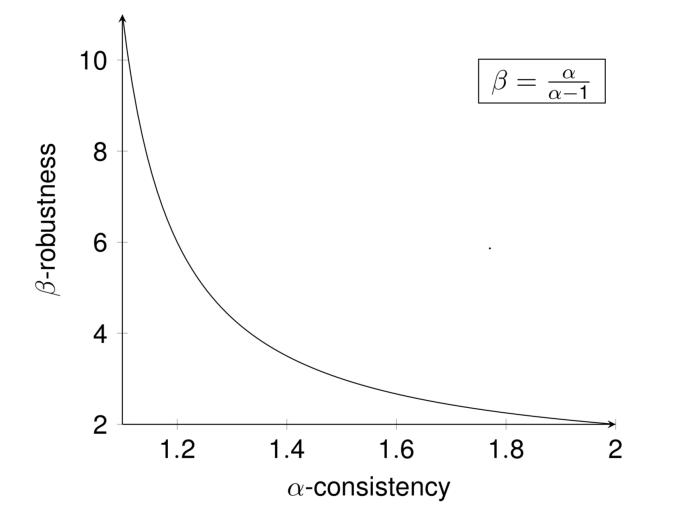
 $\beta \cdot v(M) \ge v(M_D^*)$

Theorem

Let $\gamma > 1$ be fixed arbitrarily. Then no deterministic strategyproof mechanism can achieve $(1 + \frac{1}{\gamma})$ -consistency and $(1 + \gamma - \epsilon)$ -robustness for any $\epsilon > 0$.

Proof by contradiction: assume there exists such \mathcal{M} . Consider $\gamma > 1$, $\overline{\epsilon} > 0$ and $\hat{\mathcal{M}} \cap D$:





Randomized Mechanisms for GAP variants

Bipartite Matching Problem:

- Our mechanism BOOST-OR-TRUST runs BOOST with parameter $\delta(\gamma) = \sqrt{2(\gamma + 1)} 1$ with probability p and returns $\hat{M} \cap D$ with probability 1 - p, with $p = 2/(\delta(\gamma) + 1)$
- BOOST-OR-TRUST is universally GSP, $(1 + \frac{1}{\gamma})$ -consistent and $\sqrt{2(\gamma + 1)}$ -robust.

Table 1: Overview of GAP variants considered in our paper.

GAP Variant	Restrictions ($\forall i \in L, \forall j \in R$)
Unweighted Bipartite Matching (UBMP)	$v_{ij} = 1, s_{ij} = 1, C_j = 1$
Bipartite Matching Problem (BMP)	$s_{ij} = 1, C_j = 1$
Restricted Multiple Knapsack (RMK)	$v_{ij} = v_i, s_{ij} = s_i$
Equal RMK (ERMK)	$v_{ij} = s_{ij} = v_i$
Value Consensus GAP (VCGAP)	$\exists \sigma: v_{i\sigma(1)} \geq \ldots, \geq v_{i\sigma(m)}$
Agent Value GAP (AVGAP)	$v_{ij} = v_i$
Resource Value GAP (RVGAP)	$v_{ij} = v_j$
Agent Size GAP (ASGAP)	$s_{ij} = s_i$
Resource Size GAP (RSGAP)	$s_{ij} = s_j$

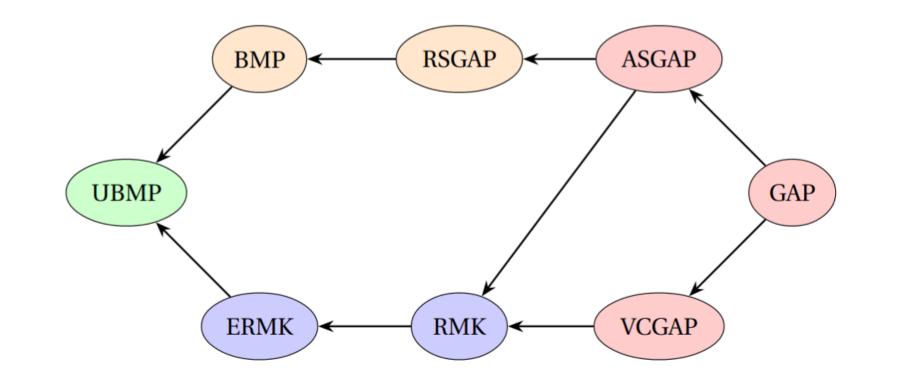


Figure 1: No deterministic strategyproof mechanism can achieve the consistency-robustness combinations below the curve.

Optimal Deterministic Mechanism for BMP

Our mechanism **BOOST** is inspired by the deferred acceptance alg. by Gale & Shapley (1962):

- Agent proposal order: Each agent i maintains an order on their set of incident edges D_i by sorting them according to non-increasing values v_{ij}
- Resource preference order: Each resource j maintains an order on their set of incident edges $D_j = \{(i, j) \in D\}$ by sorting them according to non-increasing offer values θ_{ij}
- Key idea: the offer of agent i when proposing to j is *boosted* if the edge $(i, j) \in \hat{M}$, i.e.,

$$\theta_{ij}(\gamma, \hat{M}) = \begin{cases} v_{ij} & \text{if } (i, j) \notin \hat{M}, \\ \gamma \cdot v_{ij} & \text{if } (i, j) \in \hat{M}. \end{cases}$$

- Our mechanism GREEDY orders all declared edges according to a specific ranking (part of the input) and greedily adds edges in this order to an initially empty assignment (maintaining feasibility)
- GREEDY coupled with an arbitrary ranking may not result in a strategyproof mechanism for the GAP in general!
- Our mechanism for ERMK randomizes over GREEDY and $\hat{M} \cap D$. This leads to universal GSP, $(1 + \frac{1}{\gamma})$ -consistency and $\frac{1}{2}(\sqrt{12\gamma + 13} + 1)$ -robustness.
- Our mechanisms for ASGAP and VCGAP randomize over GREEDY, BOOST and $\hat{M} \cap D$. This leads to universal GSP, $(1 + \frac{3}{\gamma})$ -consistency and $(3 + \gamma)$ -robustness.

References

[**DG10**] Shaddin Dughmi and Arpita Ghosh. Truthful assignment without money. EC 2010 [**LV21**] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. JACM 2021