Smoothness Meets Autobidding: Tight Price of Anarchy Bounds for Simultaneous First-Price Auctions

Riccardo Colini-Baldeschi¹, Sophie Klumper^{2,3}, Twan Kroll^{2,3}, Stefano Leonardi⁴, Guido Schäfer^{2,3}, Artem Tsikiridis²

¹Meta ²Centrum Wiskunde and Informatica ³University of Amsterdam ⁴Sapienza University of Rome

A Combinatorial Auction Setting

Let [m] = set of items, [n] = set of bidders.

Each bidder $i \in [n]$ has a valuation function $v_i : 2^{[m]} \mapsto \mathbb{R}_{>0}$ with $v(\emptyset) = 0$ and $v_i(S) \subseteq v_i(T)$ for all $S \subseteq T \subseteq [m]$.

- v_i is additive ($v_i \in \mathcal{V}_{ADD}$) if there exist $v_{ij} \in \mathbb{R}_{>0}$ for all $j \in [m]$ such that $v_i(S) = \sum_{j \in S} v_{ij}$.
- v_i is XOS ($v_i \in \mathcal{V}_{XOS}$), if there exists a class $\mathcal{L}_i = \{(v_{ij}^\ell)_{j \in [m]} \in \mathcal{V}_{XOS}\}$ $\mathbb{R}^m_{>0}$ of additive valuations such that for every $S \subseteq [m]$, it holds that $v_i(S) = \max_{\ell \in \mathcal{L}_i} \sum_{j \in S} v_{ij}^{\ell}$.

It holds that $\mathcal{V}_{ADD} \subseteq \mathcal{V}_{XOS}$. XOS functions include all submodular.

Item Bidding with First Price Auctions (FPAs)

Item Bidding: each $i \in [n]$ submits a bid $b_{ij} \ge 0$ per item $j \in [m]$.

A Smoothness Framework for the Autobidding World

CW

Main Advantages of Smoothness (due to Syrgkanis & Tardos (STOC, 2013)):

- 1. smoothness bounds for simple auctions \rightarrow PoA bounds for composition mechanism
- 2. allows focusing on **deterministic** bidding profiles which are simpler

Main Challenge: dealing with the heterogeneity of bidders!

Definition: ROI-restricted Bid Profiles

Let B'_i be a random bid profile of agent $i \in [n]$. We say that B'_i is ROI-restricted if for every \boldsymbol{b}_{-i} , $\mathbb{E}[p_i(B'_i, \boldsymbol{b}_{-i})] \leq \mathbb{E}[v_i(x_i(\boldsymbol{B}'_i, \boldsymbol{b}_{-i}))]$.

Notation: T = set of different bidder types i.e., set of different σ_i .

Definition: Typed Smoothness

Consider a FPA and let $i = \arg \max_{i \in [n]} v_i$ be of type $t = \sigma_i$. Then, FPA is (λ_t, μ_t) -smooth for type t if there exists an ROI-restricted B'_i such that for every profile b

 $\mathbb{E}\left[g_i\left(\boldsymbol{B}'_i, \boldsymbol{b}_{-i}\right)\right] \geq \lambda_t \cdot v_i - \mu_t \cdot p_{\boldsymbol{\mathsf{w}}(\boldsymbol{b})}(\boldsymbol{b}).$

First-price Auctions: mechanism collects $b_i = (b_{ij})_{j \in M} \in \mathbb{R}_{\geq 0}^m$ from each $i \in [n]$. Fix profile $\boldsymbol{b} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$. For each item $j \in [m]$:

- winner w(j, b): highest bidder for j i.e. $w(j, b) = \arg \max_{i \in [n]} b_{ij}$
- payments $(p_{ij}(\boldsymbol{b}))_{i \in [n]}$: $p_{w(j,\boldsymbol{b})j}(\boldsymbol{b}) = b_{w(j,\boldsymbol{b})j}$ and $p_{ij}(\boldsymbol{b}) = 0$ if $i \neq \mathbf{W}(j, \boldsymbol{b}).$

Allocation of bidder $i \in [n]$: $x_i(\mathbf{b}) = \{j \in [m] \mid i = \mathbf{w}(j, \mathbf{b})\}$ Payment of bidder $i \in [n]$: $p_i(b) = \sum_{j:i=w(j,b)} p_{ij}$

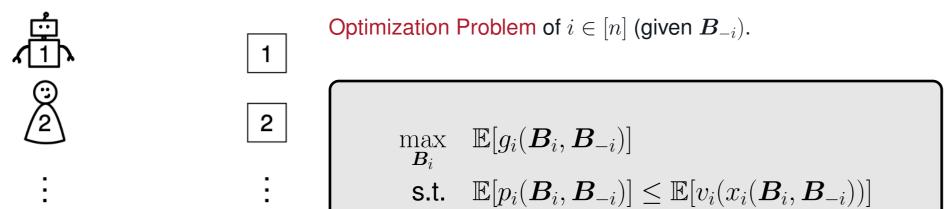
Autobidding Agents and Coarse-correlated Equilibria (CCE)

Autobidding: bidders may delegate bidding decisions to automated agents to bid for them. Leading paradigm in online advertising, see also the survey of Aggarwal et al. (SIGecom Exchanges, 2024).

Hybrid Bidders: have different reliance on autobidding agents. Formally, for each $i \in [n]$ let $\sigma_i \in [0, 1]$ be the payment sensitivity. For each bidder $i \in [n]$, define:

- gain function: $g_i(\mathbf{b}) = v_i(x_i(\mathbf{b})) \sigma_i \cdot p_i(\mathbf{b})$
- **ROI-constraint**: $p_i(\mathbf{b}) \leq v_i(x_i(\mathbf{b}))$

Let B be a random bid profile and (B_i, B_{-i}) for each $i \in [n]$ be its projections in lower dimensions.



Theorem: Extension Theorem

Consider an instance I of a simultaneous first-price auction with $v \in \mathcal{V}_{xos}$. If each FPA is (λ_t, μ_t) -smooth for each type $t \in T$ (corresponding to sensitivities σ), then

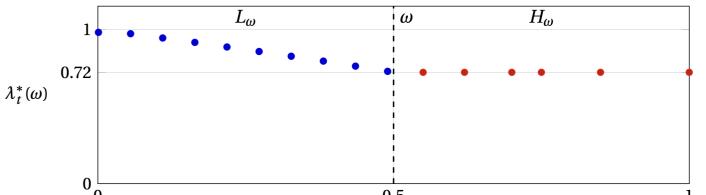
$$\min_{\boldsymbol{B}\in\mathsf{CCE}(I)} \frac{\mathbb{E}[\mathsf{LW}(\boldsymbol{B})]}{\mathsf{LW}(\mathsf{OPT}(I))} \ge \min\left\{\min_{t\in T} \lambda_t, \left(\max_{t\in T} \left(\frac{\mu_t}{\lambda_t}\right) + \max_{t\in T} \left(\frac{1-\sigma_t}{\lambda_t}\right)\right)^{-1}\right\}$$

A PoA-revealing Mathematical Program: Given types $t \in T$ and $\boldsymbol{\sigma} \in [0,1]^{|T|}$, our smoothness analysis leads us to the following optimization problem:

$$\max_{\mu} \min \left\{ \min_{t \in T} \lambda_t, \left(\max_{t \in T} \left(\frac{\mu_t}{\lambda_t} \right) + \max_{t \in T} \left(\frac{1 - \sigma_t}{\lambda_t} \right) \right)^{-1} \right\}$$
$$\lambda_t = \frac{\mu_t}{\sigma_t} \begin{pmatrix} 1 - e^{-\frac{\sigma_t}{\mu_t}} \end{pmatrix} \qquad \mu_t > 0 \qquad \text{if } \sigma_t = 1$$
$$\lambda_t = \frac{\mu_t}{\sigma_t} \begin{pmatrix} 1 - e^{-\frac{\sigma_t}{\mu_t}} \end{pmatrix} \qquad \mu_t \ge \frac{\sigma_t}{-\ln(1 - \sigma_t)} \qquad \forall t \in T: \sigma_t \in (0, 1)$$
$$\lambda_t = \mu_t \qquad \mu_t \in [0, 1] \qquad \text{if } \sigma_t = 0$$

Solving the PoA-revealing MP: Given $\omega \in (0,1)$, define $H_{\omega} = \{t \in T \mid \sigma_t \geq \omega\}$ and $L_{\omega} = \{t \in T \mid \sigma_t < \omega\}$. Define $\mu^*(\omega) \in \mathbb{R}_{>0}^{|T|}$ such that

$$u_t^*(\omega) = \begin{cases} \frac{\sigma_t}{-\ln(1-\omega)}, & \text{if } t \in H_\omega, \\ \frac{\sigma_t}{-\ln(1-\sigma_t)}, & \text{if } t \in L_\omega \text{ and } \sigma_t > 0, \\ 1, & \text{if } t \in L_\omega \text{ and } \sigma_t = 0. \end{cases}$$



ش ک

Definition: Coarse-correlated Equilibrium

m

Let B be a random bid profile satisfying $\mathbb{E}[p_i(B)] \leq \mathbb{E}[v_i(x_i(B))]$ for each $i \in [n]$. Then, **B** is a coarse-correlated equilibrium (CCE) if

 $\mathbb{E}[g_i(\boldsymbol{B})] \ge \mathbb{E}[g_i(\boldsymbol{B}'_i, \boldsymbol{B}_{-i})]$

holds for every $i \in [n]$ and every B'_i satisfying

 $\mathbb{E}[p_i(\boldsymbol{B}'_i, \boldsymbol{B}_{-i})] \le \mathbb{E}[v_i(x_i(\boldsymbol{B}'_i, \boldsymbol{B}_{-i}))].$

Liquid Welfare: total willingness to pay i.e., $LW(b) = \sum_{i=1}^{n} v_i(b)$. Price of Anarchy (PoA): for all instances I $\mathsf{CCE-PoA}(\mathcal{V}_{\mathsf{XOS}}) = \sup_{I} \sup_{\mathbf{B} \in \mathsf{CCE}(I)} \frac{\mathsf{LW}(\mathsf{OPT}(I))}{\mathbb{E}[\mathsf{LW}(\mathbf{B})]}$

Figure 1: Illustration of $\lambda^*(\omega)$ for $\omega = \frac{1}{2}$ and the partitioning of agent types T into L_{ω} (blue) and H_{ω} (red). For all $t \in H_{\omega}$, the value $\lambda_t^*(\omega)$ is given by $\lambda_t^*(\omega) = 0$ $\frac{\omega}{-\ln(1-\omega)} = \frac{1}{2\ln 2} \approx 0.72$. For all $t \in L_{\omega}$, the value $\lambda_t^*(\omega)$ satisfies $\lambda_t^*(\omega) \ge \frac{\omega}{-\ln(1-\omega)}$.

Theorem: Price of Anarchy of Simultaneous First Price Auctions

Consider the class of simultaneous first-price auctions with $v \in \mathcal{V}_{xos}$. Then:

$$\begin{aligned} \mathsf{CCE}\operatorname{-PoA}(\mathcal{V}_{\mathsf{xos}}) \leq \begin{cases} 1 + \frac{\sigma_{\max}}{1 + W_0(-e^{-\sigma_{\max}-1})} \in (2, 2.18], & \text{if } \sigma_{\max} > 1 + \frac{W_0(-2e^{-2})}{2} \\ 2, & \text{otherwise,} \end{cases} \end{aligned}$$
where $W_0(x)$ is the multi-valued inverse of xe^x . The bound is tight even for $x \in \mathcal{V}_0$ and using the event is expected as a structure of $x = 1$.

 $v \in \mathcal{V}_{ADD}$ and mixed Nash equilibria (via a matching lower bound construction).

Extends the result of **Deng et al.** (NeurIPS, 2024) for mixed Nash equilibria, $\boldsymbol{v} \in \mathcal{V}_{ADD}$ and $\sigma_i \in \{0, 1\}$.

Other Extensions: i) Equilibria with Reserve Prices (from machine-learned advice) and regret minimization ii) Additional budget constraints via XOS functions iii) Capturing other pay-your-bid formats (e.g. **multi-unit auctions** and **GFP**)