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A Combinatorial Auction Setting

Let [m] = set of items, [n] = set of bidders.

Each bidder i ∈ [n] has a valuation function vi : 2[m] 7→ R≥0 with
v(∅) = 0 and vi(S) ⊆ vi(T ) for all S ⊆ T ⊆ [m].

• vi is additive (vi ∈ VADD) if there exist vij ∈ R≥0 for all j ∈ [m]
such that vi(S) =

∑
j∈S vij.

• vi is XOS (vi ∈ VXOS), if there exists a class Li = {(vℓij)j∈[m] ∈
Rm
≥0} of additive valuations such that for every S ⊆ [m], it holds

that vi(S) = maxℓ∈Li

∑
j∈S vℓij.

It holds that VADD ⊆ VXOS. XOS functions include all submodular.

Item Bidding with First Price Auctions (FPAs)

Item Bidding: each i ∈ [n] submits a bid bij ≥ 0 per item j ∈ [m].
First-price Auctions: mechanism collects bi = (bij)j∈M ∈ Rm

≥0 from
each i ∈ [n]. Fix profile b = (b1, . . . , bn). For each item j ∈ [m]:

• winner w(j, b): highest bidder for j i.e. w(j, b) = argmaxi∈[n] bij

• payments (pij(b))i∈[n]: pw(j,b)j(b) = bw(j,b)j and pij(b) = 0 if
i ̸= w(j, b).

Allocation of bidder i ∈ [n]: xi(b) = {j ∈ [m] | i = w(j, b)}
Payment of bidder i ∈ [n]: pi(b) =

∑
j:i=w(j,b) pij

Autobidding Agents and Coarse-correlated Equilibria (CCE)

Autobidding: bidders may delegate bidding decisions to automated
agents to bid for them. Leading paradigm in online advertising, see
also the survey of Aggarwal et al. (SIGecom Exchanges, 2024).
Hybrid Bidders: have different reliance on autobidding agents. For-
mally, for each i ∈ [n] let σi ∈ [0, 1] be the payment sensitivity. For
each bidder i ∈ [n], define:

• gain function: gi(b) = vi(xi(b))− σi · pi(b)

• ROI-constraint: pi(b) ≤ vi(xi(b))

Let B be a random bid profile and (Bi,B−i) for each i ∈ [n] be its
projections in lower dimensions.

Optimization Problem of i ∈ [n] (given B−i).

max
Bi

E[gi(Bi,B−i)]

s.t. E[pi(Bi,B−i)] ≤ E[vi(xi(Bi,B−i))]

Definition: Coarse-correlated Equilibrium
Let B be a random bid profile satisfying E[pi(B)] ≤ E[vi(xi(B))] for
each i ∈ [n]. Then, B is a coarse-correlated equilibrium (CCE) if

E[gi(B)] ≥ E[gi(B′
i,B−i)]

holds for every i ∈ [n] and every B′
i satisfying

E[pi(B′
i,B−i)] ≤ E[vi(xi(B′

i,B−i))].

Liquid Welfare: total willingness to pay i.e., LW(b) =
∑n

i=1 vi(b).
Price of Anarchy (PoA): for all instances I

CCE-POA(VXOS) = sup
I

sup
B∈CCE(I)

LW(OPT(I))
E[LW(B)]

A Smoothness Framework for the Autobidding World

Main Advantages of Smoothness (due to Syrgkanis & Tardos (STOC, 2013)):

1. smoothness bounds for simple auctions → PoA bounds for composition
mechanism

2. allows focusing on deterministic bidding profiles which are simpler

Main Challenge: dealing with the heterogeneity of bidders!

Definition: ROI-restricted Bid Profiles
Let B′

i be a random bid profile of agent i ∈ [n]. We say that B′
i is ROI-restricted

if for every b−i, E[pi(B′
i, b−i)] ≤ E[vi(xi(B′

i, b−i))].

Notation: T = set of different bidder types i.e., set of different σi.

Definition: Typed Smoothness

Consider a FPA and let i = argmaxi∈[n] vi be of type t = σi. Then, FPA
is (λt, µt)-smooth for type t if there exists an ROI-restricted B′

i such that for
every profile b

E [gi (B
′
i, b−i)] ≥ λt · vi − µt · pw(b)(b).

Theorem: Extension Theorem
Consider an instance I of a simultaneous first-price auction with v ∈ VXOS. If
each FPA is (λt, µt)-smooth for each type t ∈ T (corresponding to sensitivities
σ), then

min
B∈CCE(I)

E[LW(B)]

LW(OPT(I))
≥ min

{
min
t∈T

λt,

(
max
t∈T

(
µt

λt

)
+max

t∈T

(
1− σt
λt

))−1
}

A PoA-revealing Mathematical Program: Given types t ∈ T and σ ∈ [0, 1]|T |, our
smoothness analysis leads us to the following optimization problem:

max
µ

min

{
min
t∈T

λt,

(
max
t∈T

(
µt

λt

)
+max

t∈T

(
1− σt
λt

))−1
}

λt =
µt
σt

(
1− e

−σt
µt

)
µt > 0 if σt = 1

λt =
µt
σt

(
1− e

−σt
µt

)
µt ≥ σt

− ln(1−σt)
∀t ∈ T : σt ∈ (0, 1)

λt = µt µt ∈ [0, 1] if σt = 0

Solving the PoA-revealing MP: Given ω ∈ (0, 1), define Hω = {t ∈ T | σt ≥ ω}
and Lω = {t ∈ T | σt < ω}. Define µ∗(ω) ∈ R|T |

>0 such that

µ∗
t (ω) =


σt

− ln(1−ω), if t ∈ Hω,
σt

− ln(1−σt)
, if t ∈ Lω and σt > 0,

1, if t ∈ Lω and σt = 0.

Figure 1: Illustration of λ∗(ω) for ω = 1
2 and the partitioning of agent types T

into Lω (blue) and Hω (red). For all t ∈ Hω, the value λ∗
t (ω) is given by λ∗

t (ω) =
ω

− ln(1−ω) =
1

2 ln 2 ≈ 0.72. For all t ∈ Lω, the value λ∗
t (ω) satisfies λ∗

t (ω) ≥ ω
− ln(1−ω).

Theorem: Price of Anarchy of Simultaneous First Price Auctions

Consider the class of simultaneous first-price auctions with v ∈ VXOS. Then:

CCE-POA(VXOS) ≤

1 + σmax

1+W0(−e−σmax−1)
∈ (2, 2.18], if σmax > 1 + W0(−2e−2)

2

2, otherwise,

where W0(x) is the multi-valued inverse of xex. The bound is tight even for
v ∈ VADD and mixed Nash equilibria (via a matching lower bound construction).

Extends the result of Deng et al. (NeurIPS, 2024) for mixed Nash equilibria,
v ∈ VADD and σi ∈ {0, 1}.

Other Extensions: i) Equilibria with Reserve Prices (from machine-learned ad-
vice) and regret minimization ii) Additional budget constraints via XOS func-
tions iii) Capturing other pay-your-bid formats (e.g. multi-unit auctions and GFP)


