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Abstract

In this dissertation, we propose novel algorithms for combinatorial auction environments
using an interdisciplinary approach. At the same time, we also analyze the performance
of existing auction protocols and highlight design principles that allow for provable
performance guarantees.

In the first part of the thesis we study two forward auction paradigms with practical
significance: core-selecting mechanisms and multi-unit auctions. We begin with the
notion of core-selecting mechanisms, as introduced by Ausubel and Milgrom. Such
mechanisms have overall good revenue guarantees, but are known to provide incentives
to bidders for misreporting their preferences. Current research has focused on identifying
core-selecting mechanisms with minimal incentives to deviate from truth-telling, such
as Minimum-Revenue Core-Selecting (MRCS) rules, or proposing truthful mechanisms
whose revenue is competitive against core outcomes. Our results contribute to both of
these directions. We study the core polytope in more depth and provide new properties
and insights that are of independent interest. Utilizing these properties, we then
propose a truthful mechanism that is competitive against the MRCS benchmark, the
first deterministic core-competitive mechanism for binary single-parameter domains.
We also answer an open question from the literature, of whether there exist MRCS
non-decreasing mechanisms, in the affirmative. Next, we shift our attention to multi-
unit auctions, a class of auctions first studied by Vickrey. We analyze discriminatory
price auctions, the natural multi-unit extension of the (non-truthful) first price auction.
We consider bidders with capped-additive valuations and establish properties that
capture the sources of inefficiency. We derive new lower and upper bounds on the
Price of Anarchy of mixed equilibria, showing a complete characterization of inefficient
equilibria and a tight upper bound for the case of two bidders. We also show that
the Price of Anarchy is strictly worse for multiple bidders and we exhibit a separation
result for Bayes Nash equilibria.

In the second part of this dissertation, we study procurement auctions. Firstly, we
study a covering problem motivated by spatial models in crowdsourcing markets, where
tasks are ordered according to some geographic or temporal criterion. We propose
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a truthful mechanism that achieves a bounded approximation guarantee w.r.t. the
optimal cost, improving upon the state of the art. For the same objective, we propose
a truthful fully polynomial-time approximation scheme (FPTAS) for the case of inputs
with a constant number of tasks, a generalization of the minimum knapsack problem.
We then focus on the class of budget-feasible procurement auctions, in which agents
can provide their service to the auctioneer fractionally or in many levels. We propose
two mechanisms, one for each setting. The mechanism for divisible agents improves
upon the known state of the art, whereas the mechanism for the multiple levels of
service is the first truthful and budget-feasible mechanism that achieves a constant
approximation for this setting.

We conclude the dissertation with an extended discussion along with open prob-
lems and directions for future research in algorithmic mechanism design for auction
environments.
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Περίληψη

Σε αυτή τη διατριβή, σχεδιάζουμε νέους αλγορίθμους για περιβάλλοντα συνδυαστικών

δημοπρασιών ακολουθώντας μια διεπιστημονική προσέγγιση. Ταυτόχρονα, αναλύουμε

την απόδοση υπαρχόντων πρωτοκόλλων δημοπρασιών και αναδεικνύουμε τις σχεδιαστικές

αρχές εκείνες που επιτρέπουν εγγυήσεις απόδοσης.

Στο πρώτο κομμάτι της διατριβής μελετάμε δύο υποδείγματα δημοπρασιών σημαντικών

ως προς τις πρακτικές εφαρμογές τους: δημοπρασίες πυρήνα (core-selecting auctions)
και δημοπρασίες πολλών αντιγράφων ενός αντικειμένου (multi-unit auctions). Αρχικά
μελετούμε την έννοια του πυρήνα, όπως ορίστηκε από τους Ausubel και Milgrom. Οι
μηχανισμοί αυτοί, παρά το γεγονός πως προσφέρουν συνολικά ικανοποιητικές εγγυήσεις

ως προς τα έσοδα του δημοπράτη, παρέχουν κίνητρα στους πλειοδότες να μη δηλώνουν τις

πραγματικές τους προτιμήσεις. Επομένως, ένα από τα κύρια ζητούμενα στην βιβλιογραφία

είναι ο προσδιορισμός εκείνων των μηχανισμών πυρήνα που παρέχουν στους πλειοδότες

τα ελάχιστα δυνατά τέτοια κίνητρα, όπως οι Μηχανισμοί Πυρήνα Ελαχίστων Εσόδων

(MRCS), ή η εύρεση μηχανισμών που είναι φιλαλήθεις με έσοδα ανταγωνιστικά ως προς
τα αποτελέσματα των μηχανισμών πυρήνα. Τα αποτελέσματά μας συνεισφέρουν ως προς

αμφότερες κατευθύνσεις. Αρχικά, μελετούμε το πολύτοπο που σχηματίζει ο πυρήνας σε

μεγαλύτερο βάθος και αναδεικνύουμε μερικές νέες ιδιότητες. Χρησιμοποιώντας τις ιδι-

ότητες αυτές, προτείνουμε έναν φιλαλήθη μηχανισμό που είναι ανταγωνιστικός ως προς

τα MRCS έσοδα. Ο μηχανισμός αυτός είναι ο πρώτος ντετερμινιστικός, ανταγωνιστικός
προς τον πυρήνα μηχανισμός για δυαδικά περιβάλλοντα δημοπρασιών μίας παραμέτρου

στη βιβλιογραφία. Ακόμη, δίνουμε μια καταφατική απάντηση στην ερώτηση που είχε τε-

θεί στην βιβλιογραφία σχετικά με το αν υπάρχουν μη φθίνοντες (non-decreasing) MRCS
μηχανισμοί. Στη συνέχεια, επικεντρωνόμαστε στις δημοπρασίες πολλών αντιγράφων ενός

αντικειμένου (multi-unit auctions), μια κλάση δημοπρασιών που μελετήθηκε πρώτη φορά
από τον Vickrey. Αναλύουμε δημοπρασίες διακριτής τιμής (discriminatory price), οι
οποίες αποτελούν φυσική γενίκευση των δημοπρασιών πρώτης τιμής, γνωστών για την

μη φιλαλήθειά τους. Στην μελέτη μας, λαμβάνουμε υπόψη με συναρτήσεις αξίας τύπου

capped-additive και αποδεικνύουμε ιδιότητες που συλλαμβάνουν τις πήγες μη αποδοτι-
κότητας. Στη συνέχεια εξάγουμε νέα κάτω και άνω φράγματα ως προς το Τίμημα της

Αναρχίας των μικτών σημείων ισορροπίας, δείχνοντας έναν πλήρη χαρακτηρισμό των μη

αποδοτικών σημείων ισορροπίας καθώς και ένα ακριβές άνω φράγμα για την περίπτωση

των δύο παικτών. Τέλος, δείχνουμε πως το Τίμημα της Αναρχίας είναι αυστηρά χειρότε-

ρο για την περίπτωση πολλών παικτών και παρουσιάζουμε έναν διαχωρισμό της κλάσης

αυτής με την κλάση των Μπεϋζιανών σημείων ισορροπίας κατά Nash.



vi

Στο δεύτερο κομμάτι της διατριβής, μελετάμε δημοπρασίες προμηθειών (procurement
auctions). Αρχικά, μελετάμε ένα πρόβλημα κάλυψης που προκύπτει σε γεωγραφικά μο-
ντέλα αγορών πληθοπορισμού, στα οποία οι εργασίες είναι ταξινομημένες με βάση γε-

ωγραφικά ή χρονικά κριτήρια. Σχεδιάζουμε έναν φιλαλήθη μηχανισμό που πετυχαίνει

έναν φραγμένο λόγο προσέγγισης σε σχέση με το βέλτιστο κόστος του δημοπράτη,

βελτιώνοντας το καλύτερο γνωστό αποτέλεσμα της βιβλιογραφίας. Για την ίδια αντικει-

μενική συνάρτηση, σχεδιάζουμε έναν φιλαλήθες Πλήρως Πολυωνυμικού Χρόνου Σχήμα

Προσέγγισης (FPTAS) για την περίπτωση εισόδων με σταθερό αριθμό εργασιών, μια
γενίκευση του προβλήματος minimum knapsack. Στη συνέχεια μελετάμε μια οικογένεια
αντίστροφων δημοπρασιών στην οποία ο δημοπράτης έχει περιορισμένο προϋπολογισμό

και οι πλειοδότες μπορούν να ανατεθούν να εκτελέσουν το καθήκον τους τμηματικά ή σε

πολλά επίπεδα υπηρεσίας. Προτείνουμε δύο μηχανισμούς, έναν για κάθε περιβάλλον. Ο

μηχανισμός για το περιβάλλον στο οποίο οι παίκτες μπορούν να προσληφθούν τμηματικά

βελτιώνει την υπάρχουσα βιβλιογραφία, ενώ ο μηχανισμός για πολλαπλά επίπεδα υπηρε-

σίας είναι ο πρώτος γνωστός φιλαλήθης μηχανισμός με σταθερό λόγο προσέγγισης για

αυτό το περιβάλλον.

Ολοκληρώνουμε την διατριβή με μια εκτενή συζήτηση, καθώς και με ανοικτά προ-

βλήματα και κατευθύνσεις για μελλοντική έρευνα στον πεδίο του σχεδιασμού μηχανισμών

για περιβάλλοντα δημοπρασιών.
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Chapter 1

Introduction

An auction is a transactional mechanism employed by an entity known as the auctioneer
to allocate a set of resources to interested parties known as bidders. Auctions have
a long and fascinating history, with instances of their use dating back to ancient
civilizations such as Greece and Rome. In medieval Europe, auctions were often used
to sell off land or other assets seized from debtors. In the mid-18th century, reputable
auction houses began to emerge, such as Sotheby’s and Christie’s, some of which are
still active today.

In recent times, the study of auctions has become a prevalent theme in economic
theory. Economists are now examining how auctions can be designed to maximize
efficiency, revenue, and fairness. This analysis can be traced back to the seminal work
of Vickrey (1961), who was awarded the Nobel Prize in Economics in 1996 for his
contributions to the field. Today, auction mechanisms are being used in a multitude of
settings by both state-run and private institutions alike. Ad-auctions run by search en-
gines like Google constitute their main source of revenue, while online auction platforms
such as eBay and eBid are used by millions of users daily. Other modern applications of
auctions include spectrum auctions for TV and telecommunication licenses, allocation
of airspace system resources, auctions for financial products, transportation services
and procurement auctions (see Chapters 16-21 in Cramton et al. (2006)). Procurement
auctions, in particular, are used by governments and other organizations to purchase
goods and services from suppliers. These are also referred to as reverse auctions, since
the auctioneer assumes the role of the buyer and the bidders the roles of the sellers,
and have become increasingly important in recent years due to their potential for
cost savings and transparency in the procurement process. Theoretical insights from
auction theory have been particularly significant in real-world implementations since
the early 1990s. For instance, a detailed chronicle by Milgrom (2004), another awardee
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of the Nobel Prize in Economics, presents the first spectrum auctions run by the US
Federal Communications Commission (FCC), which were considered highly successful
and incorporated learnings from the auction theory literature. More recently, the FCC
Incentive Auction, which was completed in 2017, was also a significant source of income
for the US Government and utilized parts of the revenue for deficit reduction.

Contemporary applications of auctions can present challenges and difficulties that
are not always captured by classical auction theory. One such challenge arises when
multiple items or services are offered simultaneously, and bidders can make offers
on combinations of these items. These mechanisms are known as Combinatorial
Auctions, and one of their benefits is that they can potentially result in higher revenue
than running independent auctions for each item separately (Cramton et al., 2006).
However, even for auctions with a small number of items, the decision-making process
for the auctioneer can be computationally hard, particularly when there are bids for
overlapping subsets of items. In addition to determining the allocation of items, the
auctioneer must also compute the payments to be charged to bidders, which can be
subject to further constraints. These computational difficulties arise even in relatively
simple auction settings and must be carefully considered by auction designers.

Motivated by such questions, an intense interaction has taken place over the
last two decades among researchers from computer science, operations research, and
economics, which gradually led to the development of a new scientific domain, usually
termed Algorithmic Game Theory (AGT). The seminal paper by Nisan and Ronen
(1999), which marked the beginning of AGT, studies the computational aspects of
game theory and seeks to provide algorithmic solutions to game-theoretic problems,
including auctions. Thus, combinatorial auctions form one of the main pillars of these
interdisciplinary explorations and are often seen as the paradigmatic problem at the
forefront of this domain. To design combinatorial auctions with favorable performance,
the crucial issues that need to be addressed, both theoretically and eventually in
practice, can be grouped into two categories:

1. Computational and communication complexity. When an auction is run, the
auctioneer first specifies a set of rules, regarding the bids that can be submitted,
which is referred to as the bidding language of the auction. Evidently, there is a
trade-off between the expressiveness of the bidding language and the complexity
it introduces. A language with many restrictions (on the number or type of
bids) does not allow the bidders to fully express their preferences. In a more
expressive language, the bidder can communicate her preferences more accurately,
but at the expense that the auctioneer receives a much larger input to process
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(i.e., high communication complexity). Choosing a suitable bidding language
for each application is already an interesting research question. Even more
importantly, once the auctioneer has received all the input from the bidders,
the next step is to decide how to allocate the items. This is an optimization
problem, called the Winner Determination Problem, where the desirable criteria
are either to maximize the social welfare (the total value derived for the bidders)
or the revenue derived for the auctioneer. In general, this allocation problem is
computationally intractable (NP-hard, see Lehmann et al. (2006, 2002) for some
of the first approaches, as well as the surveys in Blumrosen and Nisan (2007);
Cramton et al. (2006); Nguyen et al. (2013)). To make things even worse, it
remains intractable even for some simple versions of the problem. Limiting the
bidding language according to certain combinatorial structures (e.g., matroid
constraints, submodularity of bidding functions, etc.) leads sometimes to more
efficient algorithms. However, it remains a great challenge to come up either
with heuristic algorithms that perform well in practice, especially as the number
of items grows, or with fast approximation algorithms that provide provable
guarantees for approximating the optimal allocation.

2. Incentive compatibility and strategic behavior. Along with the allocation of the
items, the auctioneer must also assign a payment to each bidder. Ideally, the
property that we would like to enforce is that the bidders do not have incentives
to strategize and manipulate the auction (by misreporting their preferences).
Mechanisms that satisfy this property are called truthful or incentive compatible.
Although incentive compatibility is a well-sought theoretical guarantee, it is often
the case that truthful mechanisms lack simplicity and prescribe payments that are
computationally difficult to compute. In practice, when incentive compatibility
is not feasible, researchers have explored mechanisms that induce bidders to
report their preferences as close to the truth as possible. However, even with
this relaxed version of truthfulness, devising appropriate payment rules can be a
challenging task. Consequently, the efficient computation of such payment rules is
an active research topic in the field. Another direction in the study of non-truthful
auction protocols is the analysis of stable outcomes. Game theory offers various
equilibrium concepts, such as Nash equilibria and Bayes-Nash equilibria. The
Nash equilibrium is a well-known and stable outcome in the literature. From
a Bayesian perspective, bidders in an auction possess incomplete information
regarding the types of other bidders. This uncertainty is represented by assigning
values to bidders drawn from probability distributions. For a comprehensive
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overview, please refer to the survey conducted by Hartline et al. (2013) in 2013.
The concept of a Bayes-Nash equilibrium, coined by Harsanyi (1967), extends the
idea of a Nash equilibrium to accommodate this type of information asymmetry.
Therefore, to assess the performance of a non-truthful auction, it is crucial to
compare the social welfare or revenue produced at an equilibrium with the optimal
welfare/revenue. This quantification is known as the Price of Anarchy (PoA)
and was introduced by Koutsoupias and Papadimitriou (1999). Considerable
progress has been made in the study of PoA for combinatorial auctions, and one
promising implication is the existence of simple non-truthful mechanisms that
perform well concerning the generated welfare. A summary of related results can
be found in Roughgarden et al. (2017).

While a considerable amount of research has been conducted on the issues surround-
ing auction mechanisms, there remain significant challenges in this field. The primary
objective of this dissertation is to design and analyze algorithmic mechanisms, for both
forward and reverse (procurement) auctions, based on strong theoretical foundations.
These mechanisms address both the computational and incentive concerns, while ex-
ploring unexplored areas in various auction domains, some of which combinatorial.
Although the primary focus is on basic research in algorithmic game theory, it is worth
noting that this scientific field has had a direct impact on real-world applications.
Therefore, while immediate applicability is not the main goal of this thesis, it is possible
that refined versions of our mechanisms could potentially impact such implementations
in the future.

1.1 Structure of Dissertation and Main Themes

The dissertation is divided into two parts. The first part focuses on forward auctions,
while the second part centers on procurement auctions. In this section, we provide an
overview of the main themes explored in each chapter along with our main results.

In Chapter 2, we focus on the notion of the core, as adjusted in the context of
auctions by Ausubel and Milgrom (2002). In this context, the core of an auction is a set
of payments which ensure that no coalition of bidders together with the auctioneer can
switch to a better outcome of higher revenue for the auctioneer. Ausubel and Milgrom
formalized this notion after observing several shortcomings of the truthful Vickrey-
Clarke-Groves mechanism (Clarke (1971); Groves (1973); Vickrey (1961)), arguing that,
despite its good theoretical properties, it also possesses several inherent drawbacks
which hinder its implementation in practice. On the other hand, mechanisms that
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select payments from the core and simultaneously achieve allocations that maximize
welfare, known as core-selecting mechanisms, have been known to possess good revenue
and fairness guarantees and some of their variants have been used in practice especially
for spectrum and other public sector auctions. However, these auctions are generally
non-truthful. Thus, current research has focused either on identifying core-selecting
mechanisms with minimal incentives to deviate from truth-telling, such as the family
of Minimum-Revenue Core-Selecting rules, defined by Day and Raghavan (2007), or on
proposing truthful mechanisms whose revenue is competitive against core outcomes, as
proposed by Goel et al. (2015). In this chapter, we contribute to both of these directions.
We start with a comparative statics analysis on the core polytope, which we utilize in
two ways. Firstly, we propose a truthful mechanism that is competitive against the
minimum revenue in the core for downward-closed single-parameter domains. Secondly,
we study the existence of non-decreasing payment rules, meaning that the payment of
each bidder is a non-decreasing function of her bid. This property has been advocated
by the related literature but it was an open question if there exist non-decreasing
mechanisms. We answer the question in the affirmative, by describing a class of rules
with this property.

In Chapter 3, we examine multi-unit auctions, with a particular focus on the
discriminatory price auction format, which is commonly used in practice. In this
auction format, a set of bidders compete to purchase identical units of a good. While
the units are allocated in a manner that maximizes social welfare (similar to the
VCG auction), each bidder pays the sum of their bids, making it a direct extension
of the non-truthful first price auction protocol. We aim to partially characterize the
inefficient mixed Nash equilibria that can arise in this auction format and present
improved Price of Anarchy (PoA) bounds beyond the current state of the art in the
literature. To achieve this, we undertake an equilibrium analysis for bidders with
capped-additive valuations (a subclass of submodular valuations). We first establish a
series of properties to help us understand the sources of inefficiency, and then use these
results to derive new lower and upper bounds on the PoA of mixed equilibria. For the
case of two bidders, we achieve a complete characterization of inefficient equilibria and
a tight PoA bound. For multiple bidders, we show that the PoA is strictly worse than
the two-bidder case, thereby improving the best known lower bound for submodular
valuations. Additionally, we present an improved PoA upper bound for the special
case where there exists a "high demand" bidder, which surpasses the state of the art in
the literature, due to De Keijzer et al. (2013). Furthermore, we also study Bayes-Nash
equilibria and reveal a separation result that had been elusive so far. Specifically, we
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find that even with only two bidders, the PoA for Bayes-Nash equilibria is strictly
worse than that for mixed equilibria. Such separation results are not always true (as
shown by Christodoulou et al. (2016b) for simultaneous second-price auctions), and
they highlight the further inefficiency introduced by the Bayesian model in this context.

In the remaining chapters of this dissertation, we shift our focus to mechanisms
for procurement auctions. In Chapter 4, we examine a covering problem that arises
in spatial models of crowdsourcing markets, where tasks are ordered according to
geographic or temporal criteria. In this problem, each bidder can provide a certain
level of contribution for a subset of consecutive tasks, and each task has a demand
requirement. The objective is to identify a set of bidders at minimum cost who
can meet all the demand constraints. We propose two truthful mechanisms with
approximation guarantees against the optimal cost. The first mechanism achieves
a bounded approximation guarantee and improves upon the state of the art, which
features a mechanism with an arbitrarily large factor in the worst-case. The second
mechanism concerns a class of instances that generalizes the minimum knapsack
problem. Specifically, we consider inputs with a constant number of tasks and provide
a truthful, fully polynomial-time approximation scheme (FPTAS). Additionally, we
discuss the connections between our problem and other well-studied optimization
problems.

In Chapter 5, we delve into procurement auction scenarios where bidders have a
strict budget constraint. The task for the auctioneer is to purchase resources owned
by rational bidders, while keeping the cost within a fixed, predetermined budget and
maximizing a given valuation function. In this context, the cost of each resource is
private, hence our objective is to design truthful mechanisms that provide a good
approximation to the optimal value for the auctioneer and are budget-feasible, meaning
that the sum of payments to bidders does not exceed the budget. This framework
applies to many well-known optimization problems and is relevant in various application
scenarios such as crowdsourcing platforms, where bidders are workers offering tasks,
and influence maximization in social networks, where agents are influential users. We
specifically concentrate on two types of environments. In the first one, agents are
completely divisible or can be viewed as offering a fully divisible service to the auctioneer.
In the second one, the auctioneer may select each bidder for a certain number of levels
of service out of the maximum available. In this chapter, we obtain truthful and budget-
feasible mechanisms that improve upon the best-known approximation guarantees for
the auctioneer’s total value for both settings.
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Finally, in Chapter 6 we conclude the dissertation with an extended discussion of
the results along with directions for future research.

1.2 Publications

My work on the topics of this dissertation resulted in the following publications:

1. On Core-Selecting and Core-Competitive Mechanisms for Binary Single-Parameter
Auctions, 15th Conference on Web and Internet Economics, WINE 2019, Pro-
ceedings, pp. 271-285 (with E. Markakis). [Chapter 2]

2. Towards a Characterization of Worst Case Equilibria in the Discriminatory
Price Auction, 17th Conference on Web and Internet Economics, WINE 2021,
Proceedings, pp. 186-204 (with E. Markakis and A. Sgouritsa). [Chapter 3]

3. On Improved Interval Cover Mechanisms for Crowdsourcing Markets, 15th Inter-
national Symposium on Algorithmic Game Theory, SAGT 2022, Proceedings, pp.
94-112 (with E. Markakis and G. Papasotiropoulos). [Chapter 4]

In addition to the above, the following work is currently under submission to a
leading conference in the field:

4. Budget-feasible Mechanisms for Fractional Agents and Multiple Levels of Service,
Under Submission (with G. Amanatidis, S. Klumper, V. Markakis and G. Schäfer)
[Chapter 5]

I also worked on other topics during my PhD. These resulted in the following
publications:

5. Tight Welfare Guarantees for Pure Nash Equilibria of the Uniform Price Auction,
Theory of Computing Systems, Journal pp. 1451-1469 (with G. Birmpas, E.
Markakis and O. Telelis).

6. Integrating Clinical Data from Hospital Databases, 1st International Workshop
on Semantic Web Meets Health Data Management, Workshop Proceedings (with
K. Karozos, I. Spartalis, D. Trivela and V. Vassalos).





Chapter 2

Core-selecting Auctions

2.1 Introduction

In this chapter1, the focus of our work is the study of auction mechanisms, with
competitive revenue performance. Undoubtedly, one of the early landmarks within
the field of auction theory, is the VCG mechanism. At the same time however, VCG
is rarely preferred in more complex real-life auction scenarios, such as the allocation
of spectrum or other governmental licences. The shortcomings that have led to this
situation have been well summarized by Ausubel and Milgrom (2006), and one of
the most prominent drawbacks is the unacceptably low revenue that VCG generates
on instances that do not lack competition. The VCG payment corresponds to the
externality a bidder imposes on her competitors, and as a result, one can have even
zero payments in worst case, giving rise to free-riders, see Ausubel and Baranov (2020).

To counterbalance this issue, Ausubel and Milgrom (2002, 2006) adapted the notion
of the core from the theory of cooperative games and introduced the class of core-
selecting mechanisms. These mechanisms first select an optimal (welfare-maximizing)
allocation as in VCG, but then the payments are set in a way that no coalition of
bidders together with the auctioneer can switch to a better outcome, of higher revenue
for the auctioneer. It was argued in Ausubel and Milgrom (2006), that a mechanism
can be of suboptimal performance in terms of revenue precisely when the payments it
assigns are not in the core, which is quite common for VCG when the goods exhibit
complementarities. Moreover, an outcome that is not in the core can be perceived
as unfair by coalitions of bidders, who could be collectively willing to pay more but
still were not taken into consideration. Over the last years, core-selecting mechanisms

1A conference version with the results of this chapter appeared in WINE ’19 (Markakis and
Tsikiridis, 2019).
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gained even higher support especially among practitioners, due to the fact that they
have been successfully implemented for a number of high-profile spectrum auctions, as
well as other public sector auctions in several countries, see Day and Cramton (2012)
for an exposition of applications.

Given the good performance of core-selecting auctions in terms of revenue and
fairness, the next natural question is whether we can have strategyproof payment
rules in the core. Interestingly, for complement-free settings, VCG can lie in the
core. However, Goeree and Lien (2016) have shown that when complementarities
are present, core payments do not generally yield truthful mechanisms. With this
negative aspect in mind, research on this topic has focused mainly on two directions.
The first direction concerns a game-theoretic analysis of core-selecting mechanisms so
as to identify which payments from the core polytope have more desirable incentive
properties. As an example of this approach, it has been shown by Day and Raghavan
(2007) that selecting a minimum revenue core outcome also minimizes in a certain sense,
the total gain from unilateral deviations. When the minimum revenue within the core
does not prescribe a unique outcome, a further refinement needs to take place, which
is guided again by the incentives to deviate. This has led to the family of quadratic
payment rules (see Section 2.5). In parallel to these results, another way to evaluate
such mechanisms is by analyzing the performance of their Bayes Nash equilibria, e.g.,
Ausubel and Baranov (2020). At the moment, the outcomes of these works have not
yet led to definite conclusions and there is still an active debate on what are the best
core-selecting mechanisms, given also the recent experimental evaluation of Bünz et al.
(2022).

The second direction was initiated by Goel et al. (2015) and concerns the design of
truthful (hence, not generally core-selecting) mechanisms whose revenue is competitive
against a core outcome. The core benchmark was naturally taken to be the minimum
revenue core outcome, given the properties highlighted in the previous paragraph.
Hence, a mechanism is then called α-core-competitive, when it achieves a 1/α fraction
of the minimum revenue core outcome, for α ≥ 1. The main results of Goel et al. (2015)
involved the design of core-competitive mechanisms for a particular single-parameter
domain motivated by online ad auctions. For more general combinatorial auctions, one
can also obtain core-competitive mechanisms using the results of Micali and Valiant
(2007), where a stronger benchmark2 has been considered. This approach is still worth

2For single-parameter domains, the benchmark Micali and Valiant (2007) suggested is the maximum
social welfare achieved after disregarding the highest-valued bidder.
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further investigation, as finding the best ratio against the core benchmark has remained
open for various domains of interest.
Our Contribution. We focus on binary single-parameter domains, where each
bidder is either accepted or rejected in every outcome. We start in Section 2.3, with
providing some insights and properties on the geometry of the core polytope. Our
aim is to understand how the polytope is affected by a unilateral deviation of a
bidder from a given profile. To do this, we need to perform a comparative statics
analysis for the constraints of the core. In the remaining of the article, we then make
use of the main results of Section 2.3 in two ways. First, in Section 2.4, we derive
a deterministic O(log n)-core-competitive strategyproof mechanism, where n is the
number of bidders. So far, only a randomized mechanism with the same ratio was
known, implied by Micali and Valiant (2007). Our result is the first deterministic
core-competitive mechanism for arbitrary single-parameter domains. It also provides
a separation between core-competitiveness, and the stronger benchmark of Micali
and Valiant (2007), who provided an impossibility result of Ω(n) for single-parameter
environments. Second, in Section 2.5, we focus on the question of identifying more
preferred mechanisms among the possible continuum of minimum revenue core-selecting
(MRCS) payment rules. This family has been recognized as having better incentive
properties among core-selecting mechanisms, and to refine it even further, we study the
existence of non-decreasing payment rules, meaning that the payment of each bidder is
a non-decreasing function of her bid, see Erdil and Klemperer (2010) and Bosshard
et al. (2018). This property has been advocated, among others, for minimizing the
marginal incentive to deviate, but it has remained an open question if there exist
MRCS rules that satisfy it. We provide a positive answer to this question, by describing
a subclass of rules possessing the property, which can be seen as a further refinement
towards selecting MRCS mechanisms. Overall, we believe our results shed more light
on understanding core-selecting and core-competitive mechanisms, and expect that the
properties established here can have even broader appeal and applicability.

2.1.1 Related Work

The core in the context of auctions was introduced by Ausubel and Milgrom (2002,
2006), as a suitable formalism to understand settings where the VCG mechanism
underperforms in terms of revenue. Ausubel and Milgrom (2002) also proposed core-
selection as a standalone auction design goal by introducing an ascending auction
format called the ascending-proxy auction, whose equilibrium outcomes are in the core.
The topic soon gained popularity both in theory and in practice, and several follow



12 Core-selecting Auctions

up works emerged afterwards. A series of important works has focused on exploring
different core-selecting Pareto-efficient rules that have minimal incentives to deviate or
mechanisms that are core-selecting at equilibrium, see e.g., Day and Cramton (2012);
Day and Milgrom (2008); Day and Raghavan (2007); Erdil and Klemperer (2010); Ott
and Beck (2013); Parkes (2002) and Ausubel and Baranov (2020). The incentives to
deviate have been quantified under different metrics and, to our understanding, no final
consensus on the most acceptable metric has been reached. Recently, an experimental
comparison of Quadratic payment rules (Day and Cramton (2012)), was conducted by
Bünz et al. (2022) in an attempt to offer more insights on that front.

Regarding strategyproofness and core-selection, the work of Goeree and Lien (2016)
showed that when VCG payments lie in the core, then this is the only truthful mecha-
nism in the core, whereas when VCG is not in the core, there exists no other truthful
mechanism that is core-selecting. This reveals a severe incompatibility between truth-
telling and core-selection, especially for auction domains that exhibit complementarities.
Such domains can arise naturally in spectrum auctions or in auctions related to online
advertising. Nevertheless, efforts have been made to characterize the auction environ-
ments where the VCG outcome lies in the core, see e.g. Ausubel and Milgrom (2002);
Bikhchandani and Ostroy (2002); Parkes (2002); Sano (2011). In Ausubel and Milgrom
(2002), it is shown that in domains where the set of feasible allocations form a matroid
(e.g. multi-unit auctions Vickrey (1961)), VCG payments always lie in the core, and,
therefore, it does not suffer from the shortcomings we have discussed.

Goel et al. (2015), suggested the use of the minimum revenue core-selecting (MRCS)
outcome, as a competitive benchmark for the design of truthful mechanisms. In their
work, they focus on the so called Text and Image Ad-Auction, a special case of knapsack
auctions, where k ad slots are being auctioned and each bidder is known to require 1
or k ad slots. They proposed a truthful deterministic mechanism that is O(

√
log k)-

core-competitive and a truthful randomized one which is O(log log k)-core-competitive
and these factors are shown to be tight. To our knowledge, this is the only work where
a core benchmark has been explicitly used for truthful revenue maximization.

Clearly, the problem of designing truthful mechanisms for maximizing revenue is a
fundamental research direction that has attracted considerable attention, especially
since the initial works of Fiat et al. (2002); Goldberg and Hartline (2003); Goldberg et al.
(2001), see also Hartline (2013). Later on, Guruswami et al. (2005) introduced envy-
free pricing, which formed another important approach with several follow up papers.
However, these lines of inquiry have mostly focused on environments where goods are
substitutes (for which VCG payments are in the core), whereas the core-benchmark
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is meaningful for environments with complementarities. For such environments, two
notable benchmarks have been proposed by Aggarwal and Hartline (2006) for knapsack
auctions and by Micali and Valiant (2007) for general combinatorial auctions. We refer
the reader to Goel et al. (2015) for a detailed comparison of all these benchmarks with
the minimum-core-revenue benchmark. The two main takeaways of these comparisons
are that, the mechanism of Aggarwal and Hartline (2006) performs arbitrarily bad
against the MRCS benchmark, whereas the benchmark of Micali and Valiant (2007) is
stronger than MRCS. Hence being α-competitive in the sense of Micali and Valiant
(2007), implies being α-core-competitive, for α ≥ 1. In the same work, the authors
propose a truthful randomized mechanism for general combinatorial auctions that
is O(log n)-competitive against their benchmark and show that this result is tight.
Moreover, they complement this finding by showing that no deterministic mechanism
can be better that Ω(n)-competitive against their benchmark. Their result implies
a randomized O(log n)-core-competitive mechanism for the binary single-parameter
setting that we study.

Finally, we stress that by definition the core polytope consists of an exponential
number of constraints, which makes its use in mathematical programs challenging.
Fortunately, a separation oracle was introduced by Day and Raghavan (2007), but
still, each call to the separation oracle requires the solution of a welfare optimization
problem. Given these considerations, it is often assumed in the core auction literature
that a mechanism has oracle access to a welfare optimization algorithm. In these
cases, the complexity measure is the number of oracle calls to the welfare optimization
problem. Due to Day and Raghavan (2007), one can deduce then a polynomial upper
bound for the number of oracle calls required for the computation of a core point.
Obviously, when the underlying welfare optimization can be solved in polynomial time,
the mathematical program can also be solved in polynomial time. Recently, Niazadeh
et al. (2022) presented a faster algorithm for computing approximate, Pareto-efficient
core payments using only a quasi-linear number of oracle calls. Other algorithms that
perform well in practice but admit no runtime guarantees are proposed by Day and
Raghavan (2007) and Bünz et al. (2015).
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2.2 Definitions and Preliminaries

2.2.1 Single-Parameter Domains and Mechanisms

Our work focuses on mechanisms for binary, single-parameter domains. We consider a
set of bidders N = {1, 2, . . . , n}, who can express a request for some type of service
(e.g., request for obtaining a set of goods, or access to a facility, etc). Each bidder
i ∈ N has a single private parameter vi ≥ 0, which denotes the value derived by bidder
i if she is granted the service. The environment is binary in the sense that every bidder
will be either accepted or rejected. For every subset S ⊆ N , we let F(S) ⊆ 2S be the
set of feasible allocations for the bidders of S, i.e., the collection of subsets of bidders
that can be granted service simultaneously. We assume that F(N) is downward-closed,
i.e., for every X ∈ F(N) and every Y ⊆ X it holds that Y ∈ F(N). We also assume
that for every S ⊆ T , F(S) ⊆ F(T ).

An auction mechanism M = (X, p), in this setting, when run on the set N of agents,
consists of an allocation algorithm X : Rn

+ 7→ 2N and a payment rule p : Rn
+ 7→ Rn.

Initially, the auctioneer collects the vector of bids b = (bi)i∈N , where bi denotes the
bid declared by bidder i ∈ N (which may differ from vi). We assume that bi ∈ [0, ∞)
and that there are no further restrictions on the set of allowed bids. Then, given a
bidding profile b, the auctioneer runs the allocation algorithm to determine a feasible
allocation X(b) ∈ F(N), and the payment rule to determine the payment vector
p(b) = (p1(b), . . . , pn(b)), where pi(b) is the payment requested by bidder i.

We will often need to refer to sub-instances defined by a coalition of bidders. Given
a bidding vector b, and a subset of bidders S ⊆ N , we denote by bS the projection
of b on S, i.e., the vector containing the bids of the members of S. We also denote
by b−i the vector of all bids except for some bidder i. Given a profile b, if we run a
mechanism M = (X, p) on a sub-instance defined by S ⊆ N , then X(bS) ∈ F(S) will
denote the resulting allocation and p(bS) will be the corresponding payment vector
for the members of S.

We assume that bidders have quasi-linear utilities and hence, given a mechanism
M = (X, p), the final utility of bidder i ∈ N for a profile b is uM

i (b) = vi − pi(b),
when i ∈ X(b), and 0 otherwise (we enforce that losing bidders do not pay anything).
We say that M satisfies individual rationality if for every profile b and for every
bidder i ∈ N , it holds that uM

i (b) ≥ 0. Additionally, a mechanism is truthful, or
strategyproof, if for every bidder i ∈ N , every bi ≥ 0 and every profile b−i it holds that
uM

i (vi, b−i) ≥ uM
i (bi, b−i).
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Since we are in a single-parameter environment, in order to design truthful mecha-
nisms, we use the characterization of Myerson (1981). In particular, we say that an
allocation algorithm X is monotone if for every agent i ∈ N and every profile b, if
i ∈ X(b), then i ∈ X(b′

i, b−i) for b′
i ≥ bi. This means that if an agent is selected in

an allocation by declaring a bid bi, then she should also be selected when declaring a
higher bid.

Lemma 2.2.1. Given a monotone allocation algorithm X, there is a unique payment
rule p such that M = (X, p) is an incentive compatible and individually rational
mechanism. For every profile b and every bidder i ∈ N this payment is given by
pi(b) = inf

b′
i∈[0,bi]

{b′
i : i ∈ X(b′

i, b−i)} when i ∈ X(b), and pi(b) = 0 otherwise.

Lemma 2.2.1 is known as Myerson’s lemma, and the payments are often referred to
as threshold payments, since they indicate the threshold below which a bidder stops
being selected.

2.2.2 Welfare Maximization and VCG Payments

For a mechanism M = (X, p), the social welfare produced when run on a profile
b (from the viewpoint of the mechanism since each bi may differ from vi) is equal
to ∑

i∈X(b) bi. Among the most desirable outcomes in mechanism design is to select
allocations that achieve maximum welfare. In particular, for a profile b ∈ Rn

+, and for
any coalition S ⊆ N the optimal allocation with respect to bS is defined as

X∗(bS) := arg max
T ∈F(S)

∑
i∈T

bi (2.1)

We will denote by W (bS) the maximum social welfare achieved by an opti-
mal allocation. This is also referred to as the coalitional value of S: W (bS) :=
maxT ∈F(S)

∑
i∈T bi = ∑

i∈X∗(bS) bi. When S = N , we refer to an optimal allocation by
X∗(b) instead of X∗(bN), and to the optimal welfare by W (b).

Regarding tie-breaking issues, throughout this work, we assume that a consistent,
deterministic tie-breaking rule is used to select an allocation, whenever there are
multiple optimal allocations at a given profile. For example a fixed ordering on subsets
of bidders would suffice to resolve ties.

Fact 2.2.1. Given a bidding vector b, the coalitional value is monotone w.r.t. the set
of bidders, i.e. for all S ⊂ T ⊆ N , it holds that W (bS) ≤ W (bT ).
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A mechanism is called efficient or welfare-maximizing if for every input profile, it
outputs an optimal allocation. The VCG mechanism is the most popular example of an
efficient mechanism, where for a bidding profile b, the payment of bidder i ∈ X∗(b) is
the externality she imposes to the other bidders (i.e., the loss to their welfare), defined
as

pV CG
i (b) = W (b−i) −

∑
j∈X∗(b)\{i}

bj (2.2)

For every other bidder i ̸∈ X∗(b), we have pV CG
i (b) = 0. For the settings we study, one

can easily check that the VCG mechanism is individually rational and strategyproof.

2.2.3 Core-selecting Payment Rules

The notion of the core as a solution concept originates from cooperative game theory
where it captures the fact that coalitions of agents do not have incentives to appeal to
a payoff division. To adjust these ideas to the context of auctions, we first define the
following quantity, for every coalition S ⊆ N and bidding profile b.

β(S, b) := W (bS) −
∑

j∈X∗(b)∩S

bj.

This quantity is a generalization of the VCG payment formula, and can be interpreted
as the collective externality that bidders in N \ S impose to the bidders in S. Indeed,
with this notation we can restate VCG payments in Equation (2.2) as pV CG

i (b) =
β(N \ {i}, b), for every bidder i ∈ X∗(b).

Core-selecting payment rules were initially defined in the space of utility vectors by
Ausubel and Milgrom (2002). In our work we follow the equivalent formulation of Day
and Cramton (2012) that recasts them to the space of payment vectors. For a profile
b, the core polyhedron is defined w.r.t. an optimal allocation X∗(b) as follows

CORE(b) = {p ∈ Rn :
∑

j∈X∗(b)\S

pj ≥ β(S, b) ∀S ⊆ N, pj = 0 ∀j ̸∈ X∗(b)}. (2.3)

Definition 2.2.1. A payment rule is called core-selecting, if it is individually rational
w.r.t. the reported bids, and p(b) ∈ CORE(b) for every profile b. Furthermore,
a mechanism M = (X, p) is a core-selecting mechanism if (i) X(b) is a welfare-
maximizing allocation for every profile b, and (ii) p is a core-selecting payment rule.

The constraints of the core polytope in (2.3) require that every coalition of bidders
pays at least their collective externality or, in other words, the damage their presence
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inflicts on the remaining bidders. To provide more intuition, another way to view this
is that under a core payment vector, and if bidders are truthful, then every coalition
S, together with the auctioneer creates a collective utility at least as high as W (bS),
which is the best they could achieve if they ran an auction among themselves. In
more detail, if u0 is the auctioneer’s utility, which equals ∑

j∈N pj, the core constraint
for S in (2.3) is equivalent to u0 + ∑

j∈S uj(b) ≥ W (bS), under the assumption that
bidders are truthful. Using this formulation, and individual rationality, if the outcome
of a mechanism is not in the core, this implies that u0 < W (bS). Hence, there was a
coalition that could offer the auctioneer a higher revenue and yet this did not happen.

It is easily verifiable that the pay-your-bid auction, where every winning bidder pays
her bid, coupled with the optimal allocation, is a core-selecting mechanism. This rule
is sometimes mentioned in the literature as the seller-optimal core-selecting payment
rule since it maximizes the revenue of the auctioneer with respect to the declared
bids. Given that core-selecting mechanisms are not truthful in general, see also Goeree
and Lien (2016), a natural quest has been to identify payments in the core where the
incentives to misreport are minimized. Formalizing this idea, Day and Milgrom (2008)
proposed the use of Pareto-efficient core payments, which, in the core-literature are
also referred to as bidder-optimal payment rules.

Definition 2.2.2 (Pareto-efficient core payments Day and Milgrom (2008)). Let b be
a bidding profile and p ∈ CORE(b). We say that p is a Pareto-efficient core payment
if for every payment p′ such that p′

i ≤ pi for every bidder i ∈ X∗(b), and with strict
inequality for at least one bidder, we have that p′ ̸∈ CORE(b).

A prominent class of Pareto-efficient payment rules in the literature are the minimum
revenue core-selecting (MRCS) rules, i.e., the minimum revenue points in the core, first
introduced by Day and Raghavan (2007). An MRCS rule assigns payments given a
profile b, that are optimal solutions of the linear program:

min
p∈Rn

®∑
j∈N

pj : p ∈ CORE(b), p ≤ b
´

. (2.4)

It is trivial to check that this is indeed a Pareto-efficient core payment rule. We denote
by MREV(b) the optimal value of the objective function in (2.4). As shown by Day and
Milgrom (2008), the minimum core revenue still gives a better revenue guarantee than
VCG, i.e., for a profile b, MREV(b) ≥ ∑

i∈N pV CG
i (b). A further advantage of MRCS

rules, established by Day and Raghavan (2007), is that they minimize the total gains
from unilateral deviations. Finally, an interesting note by Day and Milgrom (2008) is
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that whenever the VCG payment belongs to the core, it is the unique MRCS rule 3,
because it is the unique Pareto-efficient point. Otherwise, the linear program in (2.4)
has a continuum of solutions and a secondary refinement is required in practice to select
a particular MRCS payment rule in a disciplined way. We continue this discussion in
Section 2.5, by studying Quadratic Payment Rules, a class of core payment rules which
are often used as such a refinement.

2.2.4 Core-competitive Mechanisms

A different approach has been initiated by Goel et al. (2015) concerning revenue
guarantees in relation to the core outcomes. Since core-selecting mechanisms are not
always truthful (despite their good incentive properties), Goel et al. (2015) proposed
the design of truthful mechanisms whose revenue is competitive against a core outcome.
Given the discussion in Section 2.2.3, it is quite natural to use as a core benchmark
the revenue attained by the MRCS rules. One can evaluate then truthful mechanisms
as follows:

Definition 2.2.3 (Goel et al. (2015)). Let M = (X, p) be a truthful mechanism. We
say that M is α-core-competitive, with α ≥ 1, if for any bidding profile b, it assigns a
payment vector p(b), such that ∑n

i=1 pi(b) ≥ 1
α
MREV(b).

We will follow this approach in Section 2.4 for single-parameter domains.

2.3 Insights on the Geometry of the Core

The goal of this section is to establish insights and properties for the core polytope, and
in particular with regard to how the polytope changes when a single bidder declares
a higher bid, i.e., we study the relation between CORE(b) and CORE(b′

i, b−i), with
b′

i > bi for some i ∈ X∗(b). The results we present here will be the key ingredients to
prove the two main results of our work in Section 2.4 and Section 2.5.

Throughout this section, we assume that for all payment vectors that we consider,
we have set pj = 0 for every j ̸∈ X∗(b), for a profile b.

3In this case the total gains from unilateral deviations are actually 0, as VCG is an incentive
compatible mechanism.
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2.3.1 Warm up: Pareto-efficiency and Individual Rationality
within the Core

According to Definition 2.2.1, a core-selecting mechanism must be individually rational
with respect to the reported bids. In this section, we show that for Pareto-efficient
core-selecting payment rules, we have individual rationality for free, and there is, in
fact, no need for the auctioneer to explicitly enforce the IR constraints. We start with
Lemma 2.3.1, which is a straightforward characterization of Pareto-efficient payment
rules. It simply says that for every winning bidder i, at least one core constraint that
contains the payment of i must be satisfied with equality.

Lemma 2.3.1. Let b be a bidding profile, and p ∈ CORE(b). The vector p is a
Pareto-efficient core payment if and only if for every bidder i ∈ X∗(b) there exists a
coalition S ⊂ N with i ̸∈ S such that

∑
j∈X∗(b)\S

pj = β(S, b). (2.5)

Proof. (⇒) For every bidder i ∈ X∗(b), let Si ⊂ N be a coalition that satisfies (2.5)
and does not include bidder i. Suppose for contradiction that p is not Pareto-efficient.
Then, there exists a bidder k ∈ X∗(b) and p′

k < pk, such that (p′
k, p−k) ∈ CORE(b).

However, this vector of payments cannot be feasible since

∑
j∈X∗(b)\(Sk∪{k})

pj + p′
k <

∑
j∈X∗(b)\Sk

pj = β(Sk, b),

which is a violation of the core constraint in (2.3) for the coalition Sk. This implies
that (p′

k, p−k) ̸∈ CORE(b), a contradiction.

(⇐) Suppose for contradiction that there exists a bidder k ∈ X∗(b), such that for
every coalition S ⊂ N , that does not include k, Equation (2.5) does not hold, i.e.,∑

j∈X∗(b)\S

pj > β(S, b). Then, there exists p′
k < pk such that the payment (p′

k, p−k) satisfies

the core constraint for every coalition S ⊂ N that does not include bidder k. This
implies that (p′

k, p−k) ∈ CORE(b) (since the remaining core constraints for coalitions
that contain k are satisfied by the fact that p belongs to the core). But this means
that p is not Pareto-efficient, a contradiction.

We now show that Pareto-efficiency within CORE(b) implies individual rationality
with respect to b.
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Lemma 2.3.2. A payment rule that for any given profile b prescribes a Pareto-efficient
vector of payments p ∈ CORE(b), satisfies pi ≤ bi for every bidder i ∈ X∗(b).

Proof. Given a bidding profile b, let p ∈ CORE(b) be a Pareto-efficient payment.
Fix a bidder i ∈ X∗(b). Since p is Pareto-efficient, by Lemma 2.3.1 there exists a
coalition S ⊆ N , that does not include i, for which

∑
j∈X∗(b)\S

pj = β(S, b). We distinguish

the following cases:

1. S = N \ {i}. In this case, bidder i is asked to pay precisely her VCG payment
since ∑

j∈X∗(b)\(N\{i})
pj = pi = β(N \ {i}, b) = pV CG

i (b) ≤ bi

and the last inequality holds since VCG is an individually rational mechanism,
due to Fact 2.2.1.

2. S ⊂ N \ {i}. Consider the coalition S ∪ {i} ⊂ N . Since p ∈ CORE(b), by (2.3)
we have

∑
j∈X∗(b)\(S∪{i})

pj ≥ β(S ∪ {i}, b) = W (bS∪{i}) −
∑

j∈X∗(b)∩(S∪{i})
bj ≥ W (bS) −

∑
j∈X∗(b)∩S

bj − bi

= β(S, b) − bi =
∑

j∈X∗(b)\S

pj − bi.

The second inequality follows from Fact 2.2.1 and the last equality from the fact
that S satisfies Equation (2.5) by assumption. By rearranging terms we obtain
that pi ≤ bi.

Lemma 2.3.2 allows us to omit individual rationality constraints and focus only on
the core constraints, when reasoning about Pareto-efficient payment rules. Moreover,
using the fact that MRCS payments are Pareto-efficient, we can now simplify the linear
program of Equation (2.4).

Corollary 2.3.1. A payment rule is MRCS if, given a profile b, it assigns payments
that are optimal solutions of the linear program

min
p∈Rn

®∑
j∈N

pj : p ∈ CORE(b)
´

. (2.6)
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2.3.2 The Effects of Unilateral Deviations on the Core

We now aim to understand how the core polytope that forms after a unilateral deviation
of a winning bidder is related to the initial core polytope. Initially, we focus on how
each of the constraints in the polytope is modified and perform a sensitivity analysis
for the term β(S, b), the collective externality that appears in the core constraints in
(2.3), for every S ⊆ N . Hence, for a given profile b, a bidder i ∈ X∗(b) and a bid
b′

i > bi, we are interested in the relationship between β(S, b) and β(S, (b′
i, b−i)).

To proceed, our analysis will be dependent on the following quantity, defined for
an input profile b, a bidder i ∈ X∗(b), and a coalition S ⊆ N with i ∈ S.

ti(bS\{i}) = min{z : ∃T ⊆ S, s.t. i ∈ T and
∑

j∈T \{i}
bj + z = W (z, bS\{i})} (2.7)

The term ti(bS\{i}) is the minimum bid i should declare to be included in some
optimal allocation in an auction where only the bidders from S are present. This
is precisely the Myerson threshold payment, for mechanisms where the allocation
algorithm produces an optimal allocation when run on input profile bS. Namely4, if
i ∈ X∗(bS), then ti(bS\{i}) = pV CG

i (bS). The following simple lemma can be easily
established for the optimal welfare of coalition S.

Lemma 2.3.3. Given a bidding vector b, a bidder i ∈ X∗(b) and a bid b′
i such that

0 ≤ b′
i ≤ ti(bS\{i}), it holds that

W (b′
i, bS\{i}) = W (bS\{i}). (2.8)

Proof. When b′
i < ti(bS\{i}), by the definition of ti(bS\{i}) in Equation (2.7), bidder i

is not included in any optimal allocation when only bidders in S are present. Therefore,
since i does not generate any value to the coalition S, her existence might as well be
ignored and Equation (2.8) holds.

When b′
i = ti(bS\{i}), using again the definition of ti(bS\{i}) in Equation (2.7),

bidder i is included in an optimal allocation for the auction among the bidders in S.
However, we claim that at the same time there exists another optimal allocation when
only bidders in S are present, that does not include i.

Suppose for contradiction that this is not the case. This means that bidder i belongs
to all optimal allocations among bidders in S, when bidding ti(bS\{i}) against the bids

4It can also happen that due to tie-breaking, X∗(bS) does not coincide with T from (2.7), and
thus i ̸∈ X∗(bS), in which case ti(bS\{i}) ̸= pV CG

i (bS) = 0.
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bS\{i}. Then, bidder i can bid ti(bS\{i}) − ϵ, for a sufficiently small ϵ > 0 and remain a
member of all optimal allocations among bidders in S. This however, is a contradiction,
since ti(bS\{i}) is defined as the minimum bid i can issue and be part of one optimal
allocation for set S.

Therefore, since there exists an optimal allocation among bidders in S without
i for the profile (ti(bS\{i}), bS\{i}), the coalitional value W (ti(bS\{i}), bS\{i}) can be
achieved by the bidders of this particular optimal allocation that does not include i.
Hence bidder i can be ignored and Equation (2.8) still holds.

The following key lemma encapsulates the effects on the collective externality of S

by a unilateral deviation of a bidder i ∈ S.

Lemma 2.3.4 (Sensitivity analysis for β(S, b)). Let b be a bidding profile. Fix a
bidder i ∈ X∗(b), and a coalition S ⊆ N . Suppose that bidder i unilaterally deviates to
b′

i > bi. Then:

1. If i ̸∈ S or if i ∈ S and bi ≥ ti(bS\{i}) then

β(S, (b′
i, b−i)) = β(S, b). (2.9)

2. If i ∈ S and bi < ti(bS\{i}) then

β(S, (b′
i, b−i)) = β(S, b) − (min{b′

i, ti(bS\{i})} − bi) (2.10)

Proof. Since the optimal allocation algorithm is monotone and i ∈ X∗(b), it holds
that X∗(b′

i, b−i) = X∗(b), for b′
i > bi. We distinguish the following cases concerning

bidder i and the coalition S:

1. i ̸∈ S: Then bidder i has no influence on β(S, b). By the monotonicity of the
allocation algorithm, we have

β(S, (b′
i, b−i)) = W (bS) −

∑
j∈X∗(b′

i,b−i)∩S

bj = W (bS) −
∑

j∈X∗(b)∩S

bj = β(S, b).

2. i ∈ S and bi ≥ ti(bS\{i}): By the definition of ti(bS\{i}), we know there exists
an optimal allocation T ∈ F(S) with respect to bS, and with i ∈ T . Hence∑

j∈T bj = W (bS) = ∑
j∈X∗(b) bj. By the monotonicity of the optimal allocation

algorithm, it is true that T is also optimal with respect to (b′
i, bS\{i}), for all
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b′
i > bi. For brevity in the algebraic manipulations below, we denote by X∗ the

optimal allocation X∗(b). Hence,

β(S, (b′
i, b−i)) = W (b′

i, bS\{i}) −
∑

j∈X∗∩(S\{i})
bj − b′

i =
∑

j∈T \{i}
bj + b′

i −
∑

j∈X∗∩(S\{i})
bj − b′

i

=
∑

j∈T \{i}
bj + bi −

∑
j∈X∗∩(S\{i})

bj − bi = W (bS) −
∑

j∈X∗∩S

bj = β(S, b).

The second equality holds because X∗(b′
i, b−i) = X∗(b), and the third equality

follows since we argued that T is also optimal for (b′
i, bS\{i}).

3. i ∈ S and bi < ti(bS\{i}): In this case, bidder i ∈ X∗(b) is not included in any
optimal allocation with respect to bS. We need to consider two subcases. When
b′

i ≤ ti(bS\{i}) we have:

β(S, (b′
i, b−i)) = W (b′

i, bS\{i}) −
∑

j∈X∗∩(S\{i})
bj − b′

i = W (bS\{i}) −
∑

j∈X∗∩(S\{i})
bj − b′

i

= W (bS) −
∑

j∈X∗∩S

bj − (b′
i − bi) = β(S, b) − (b′

i − bi). (2.11)

The second and the third equalities follow from Lemma 2.3.3, since both b′
i ≤

ti(bS\{i}) and bi < ti(bS\{i}).

In the second subcase, when b′
i > ti(bS\{i}), the unilateral deviation of i enables

her to be included in an optimal allocation among bidders in S. Then, we can
see that

β(S, (b′
i, b−i)) = β(S, (ti(bS\{i}), b−i)) = β(S, b) − (ti(bS\{i}) − bi).

The first equality above follows by applying Equation (2.9) for the profile
(ti(bS\{i}), b−i), whereas the second equality follows from Equation (2.11), us-
ing b′

i = ti(bS\{i}). Summarizing the two subcases, we obtain β(S, (b′
i, b−i)) =

β(S, b) − (min{b′
i, ti(bS\{i})} − bi), which completes the proof.

Lemma 2.3.4 enables us to prove the two theorems that follow. The first theorem
says that for binary single-parameter domains, when a winning bidder declares a higher
bid, the space of core payments can only get larger.

Theorem 2.3.1. Let b be a bidding profile and i ∈ X∗(b). Then, for every b′
i > bi,

CORE(b) ⊆ CORE(b′
i, b−i).
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Proof. Note first that for b′
i > bi, since the optimal allocation algorithm is monotone

and i ∈ X∗(b), it holds that X∗(b′
i, b−i) = X∗(b). Consider now a vector p in

CORE(b). We will show that p is also a member of CORE(b′
i, b−i). This is equivalent

to showing that for every S ⊆ N , p satisfies

∑
j∈X∗(b)\S

pj ≥ β(S, (b′
i, b−i)).

When S ⊆ N is a coalition such that either i ̸∈ S or i ∈ S and bi ≥ ti(bS\{i}), then by
Lemma 2.3.4, we immediately have

∑
j∈X∗(b)\S

pj ≥ β(S, b) = β(S, (b′
i, b−i)).

On the other hand, when i ∈ S and bi < ti(bS\{i}), then again by Lemma 2.3.4
(Equation (2.10)), and since p ∈ CORE(b), we obtain

∑
j∈X∗(b)\S

pj ≥ β(S, b) = β(S, (b′
i, b−i)) + min{b′

i, ti(bS\{i})} − bi > β(S, (b′
i, b−i)),

where the last inequality follows from the facts that b′
i > bi and ti(bS\{i}) > bi.

We note that the set inclusion claimed in Theorem 2.3.1 can be strict, i.e., there
exists a bidding profile b, a bidder i ∈ X∗(b) and a b′

i > bi such that CORE(b) ⊂
CORE(b′

i, b−i). We refer to Section 2.3.3 for more on this.
The next theorem says that in order for a payment to belong to the enlarged

polyhedron CORE(b′
i, b−i), albeit not to CORE(b), bidder i should be charged a

payment that exceeds her previous bid.

Theorem 2.3.2. Let b be a bidding profile and fix a bidder i ∈ X∗(b). For b′
i > bi, let

p ∈ CORE(b′
i, b−i) be a payment vector with pi ≤ bi. Then, p ∈ CORE(b).

Proof. Suppose for contradiction that this is not true, i.e., for a deviating bidder
i ∈ X∗(b), there exists a payment profile p ∈ CORE(b′

i, b−i) with pi ≤ bi, such
that p ̸∈ CORE(b). This implies that there exists a coalition S ⊆ N for which the
constraint in (2.3) is violated, i.e.

∑
j∈X∗(b)\S

pj < β(S, b). (2.12)
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If S is a coalition with i ̸∈ S or i ∈ S but with bi ≥ ti(bS\{i}), since p ∈ CORE(b′
i, b−i),

by Equation (2.3) we obtain

∑
j∈X∗(b)\S

pj ≥ β(S, (b′
i, b−i)) = β(S, b),

where the last equality is due to (2.9) of the Lemma 2.3.4. However, this contradicts
(2.12).
Consider now the case when coalition S is such that i ∈ S and bi < ti(bS\{i}). Note
that this implies that S cannot be the singleton coalition {i}, as the minimum bid i

must bid to be in an optimal allocation on her own is 0, and we would have bi < 0.
Consider the constraint S \ {i}. We have

∑
j∈X∗(b)\S

pj + pi ≥ β(S \ {i}, (b′
i, b−i))

= W (bS\{i}) −
∑

j∈X∗(b)∩(S\{i})
bj

= W (bS) −
∑

j∈X∗(b)∩S

bj + bi = β(S, b) + bi. (2.13)

The inequality follows from applying (2.3) for the constraint corresponding to S \ {i},
and the second equality from Lemma 2.3.3, since bi < ti(bS\{i}). By combining (2.12)
and (2.13) we obtain

β(S, b) + bi < pi + β(S, b),

which is a contradiction.

Theorem 2.3.2 will be particularly useful in Section 2.5.

2.3.3 A Comment on Revenue Monotonicity of MRCS

Theorem 2.3.1 has the following corollary for MRCS core payments, defined in (2.6).

Corollary 2.3.2. Let b be a bidding profile. Suppose bidder i ∈ X∗(b), and let b′
i > bi.

Then
MREV(b′

i, b−i) ≤ MREV(b). (2.14)

Proof. Let p∗ ∈ CORE(b) be an MRCS payment (an optimal solution to the linear
program in Equation (2.6)) for the profile b. Moreover, let p′ ∈ CORE(b′

i, b−i) be
an MRCS solution for the profile (b′

i, b−i). By Theorem 2.3.1, it is true that every
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feasible payment vector p ∈ CORE(b) is also in CORE(b′
i, b−i). Therefore, since

p∗ ∈ CORE(b), we have that p∗ ∈ CORE(b′
i, b−i). Hence,

MREV(b) =
∑
j∈N

p∗
j ≥

∑
j∈N

p′
j = MREV(b′

i, b−i).

The inequality follows since p′ is an optimal solution for MRCS, a linear program with
a minimization objective, for the profile (b′

i, b−i).

Corollary 2.3.2 states that a higher willingness to pay by a winning bidder will
never lead to an increase of the auctioneer’s revenue under MRCS, for all binary
single-parameter auctions. This result may look counter-intuitive on a first reading,
especially for instances where (2.14) is satisfied with strict inequality. In the literature,
this phenomenon is commonly mentioned as a violation of revenue-monotonicity. There
are several facets in studying revenue monotonicity, as it concerns the effects on the
revenue when adding new bidders, or increasing the offers of the current bidders, or
more generally when changing some parameter of the auction. The version we consider
here is referred to as bidder revenue monotonicity, Beck and Ott (2010).

Pareto-efficient rules that assign payments in the core have been known to be
susceptible to violating this property. Namely, it has been shown by Beck and Ott
(2010); Lamy (2010), that in a multi-parameter domain with at least three items,
revenue-monotonicity is violated. Here, we strengthen these results by showing that
revenue-monotonicity can be violated in single-parameter auctions as well: we construct
an instance with single-minded bidders, where a unilateral bid increase by a winning
bidder strictly decreases the MRCS revenue. The proof of the following proposition
can be found in Section A.1 of Appendix A.

Proposition 2.3.1. In binary single-parameter auction environments, there exist
examples where MRCS rules violate revenue-monotonicity, i.e., Equation (2.14) is
satisfied with strict inequality.

Aside from this discussion, and quite surprisingly, Corollary 2.3.2 also plays a
crucial role in the analysis of a core-competitive mechanism that we present in Section
2.4.
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2.4 An O(log n)-core-competitive Mechanism

In this section, we present a first application of the properties we derived in Section
2.3. We move away from core-selecting mechanisms with the goal of designing truthful
mechanisms that achieve a good revenue approximation with respect to core outcomes.
Our main result is a deterministic, truthful mechanism that is also O(logn)-core-
competitive with respect to the MRCS benchmark. Although we are not analyzing
core-selecting mechanisms in this section, the properties of the core, identified in
Section 2.3 (namely Corollary 2.3.2 of Theorem 2.3.1), will still come in handy for the
analysis of our mechanism.

Mechanism M̂ = (X̂, p̂).
Input: A value profile v ∈ Rn

+.
Output: An allocation X̂(v) ∈ F(N) and a vector of payments p̂(v).

1. Find an optimal allocation X∗(v). Let m = |X∗(v)|.

2. Let s1, . . . , sm be an ordering of the bidders in X∗(v), such that vs1 ≥ · · · ≥ vsm .
Let k ≤ m be the largest index such that

k · vsk
≥ MREV(v)

Hn

. (2.15)

3. Set X̂(v) = {s1, . . . , sk} and p̂(v) according to Myerson’s Lemma (Lemma
2.2.1).

Figure 2.1 An O(log n)-core-competitive and strategyproof mechanism.

The mechanism is described in Figure 2.1, where we have used the real valuation profile
for the bidders, b = v (since we will establish that the mechanism is truthful). We also
denote the n-th harmonic number by Hn = ∑n

i=1 1/i = Θ(log n). In the first step, we
find a welfare-maximizing allocation. However, instead of allocating to all bidders in
the optimal solution, in the second step the mechanism disqualifies some bidders with
values that do not meet a certain cutoff. In case of ties in step 2, it suffices to have
a consistent deterministic tie-breaking rule, e.g., given by an ordering on the set of
bidders. The mechanism tries, in some sense, to be as inclusive as possible, as long as
the value of the last member of X̂(v) is not too small for the coalition to collectively
miss the cutoff.

The main result of this section is the following:
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Theorem 2.4.1. The mechanism M̂ is individually rational, truthful, and O(log n)-
core-competitive.

Sections 2.4.2 and 2.4.3 are devoted to the proof of Theorem 2.4.1. Before proceeding
to the proof, we discuss some aspects of the mechanism, and comparisons with other
results.

2.4.1 Remarks on Tightness, Complexity and Other Implica-
tions

Our mechanism is applicable to all binary single-parameter auction domains with a
downward-closed set of feasible allocations F(N). In particular, for environments
where the VCG payments are not in the core, such as environments that exhibit
complementarities or where the set F(N) is not a matroid, our mechanism is the only
known deterministic strategyproof mechanism that is competitive with regard to the
MRCS benchmark for arbitrary binary single-parameter domains.

Prior to our work, a randomized, exponential, strategyproof mechanism was known
that is also O(log n)-core-competitive by Micali and Valiant (2007). Hence, a conse-
quence of our result is that it resolves the question of whether deterministic mechanisms
can attain the same performance as randomized ones w.r.t. core-competitiveness. More-
over, the result of Micali and Valiant (2007) is based on establishing competitiveness
against a stronger benchmark, which is the maximum welfare that can be achieved
when the highest bidder is ignored. We point the reader to Goel et al. (2015) for
more detailed comparisons between this benchmark and MRCS. With this in mind,
what we find most valuable for our result is that it provides a strict separation on
the performance of the two benchmarks, since Micali and Valiant (2007) show that
deterministic mechanisms cannot perform better than Ω(n) for their benchmark, even
for single-parameter domains. Hence, our mechanism illustrates that the benchmark of
Micali and Valiant (2007) is much more stringent, whereas the MRCS core benchmark
is more amenable to multiplicative approximations and might be more suitable for
revenue maximization.

Regarding complexity, our mechanism clearly has a worst-case exponential running
time, because it requires the computation of an optimal allocation and of MREV(b).
As already discussed in Section 2.1.1, the bottleneck of having to solve the welfare
maximization problem for various subsets of bidders is not uncommon in the core
auction literature, and it is often assumed that the mechanism has oracle access to a
welfare maximization algorithm. Given the results derived by Day and Raghavan (2007)
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for computing MREV(b), we can conclude that our mechanism can be implemented
with a polynomial number of oracle calls to welfare maximization. Faster algorithms
have also been proposed for MREV(b), e.g., Niazadeh et al. (2022), but these compute
ϵ-bidder-optimal core points and hence are not suitable for our mechanism. Finally,
the work of Day and Raghavan (2007) implies that for settings where there exist
efficient algorithms for welfare optimization, our mechanism is also implementable
in polynomial time. As examples, we mention that this is the case (i) for the Text-
and-Image setting of Goel et al. (2015), (ii) for Maximum Weight Matching auctions,
where bidders represent the edges of a graph and optimal welfare corresponds to a
maximum matching5. Both of these settings are of interest to us since they possess
complementarities, hence there are no truthful mechanisms in the core.

As for tightness, recall that for a given value profile v, the mechanism selects as the
set of winning bidders, a subset of the optimal allocation X∗(v). Related to this, for the
special case studied by Goel et al. (2015), the authors show that for mechanisms that
output as an allocation a subset of an optimal allocation, O(log n)-core-competitiveness
is the best one can hope for. This implies that our result is tight, and among such
mechanisms, it achieves the best possible core-competitiveness.

2.4.2 Feasibility and Monotonicity of X̂

To show that the mechanism always outputs a feasible allocation, we use the fact that
for a given v, X̂(v) ⊆ X∗(v). Since the optimal allocation X∗(v) ∈ F(N) and since
we have assumed that F(N) is downward-closed, then X̂(v) is feasible.

Moreover, we claim that the allocation algorithm X̂ always outputs a non-empty
allocation, i.e., the cutoff set in (2.15) is always achievable by at least one index
k ∈ {1, . . . , |X∗(v)|}. To prove this claim, we define first for a vector of values
v1 ≥ v2 ≥ · · · ≥ vℓ, the maximum uniform price revenue as maxj∈{1,...,ℓ} j · vj. The
following is a well known lower bound on the uniform price revenue, proposed by
Goldberg et al. (2006).

Lemma 2.4.1 (Due to Goldberg et al. (2006)). Given v1 ≥ · · · ≥ vℓ, it holds that
maxj∈{1,...,ℓ} j · vj ≥ 1

Hℓ

∑ℓ
i=1 vi.

Using this, we can now prove a lower bound in terms of the MRCS revenue.

5These auctions can be motivated by facility location and franchising considerations. The auctioneer
can be seen as a company aiming to place stores that should not be on the same neighborhood or on
the same street.
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Lemma 2.4.2. Let v be a value profile, and m = |X∗(v)|. Let s1, s2, . . . sm be an
ordering of the bidders in X∗(v) by their value in a non-increasing order. Then
maxj∈{1,...,m} j · vsj

≥ MREV(v)
Hn

.

Proof. Let p ∈ CORE(v) be a core payment of minimum revenue, i.e. ∑
j∈X∗(v) pj =

MREV(v). By invoking Lemma 2.4.1 on the values vs1 ≥ vs2 ≥ · · · ≥ vsw we have

max
j∈{1,...,m}

j · vsj
≥

∑
j∈X∗(v) v

j

Hm

≥
∑

j∈X∗(v) v
j

Hn

≥
∑

j∈X∗(v) p
j

Hn

= MREV(v)
Hn

.

The last inequality follows from the fact that the family of MRCS payment rules are
individually rational.

Lemma 2.4.2 directly implies that our proposed mechanism always outputs a non-
empty solution, i.e., the cutoff value set in (2.15) will be satisfied by at least one
index.
We now show that the allocation algorithm X̂ is monotone. Lemma 2.4.3 below will
be the key to establish this argument, which is in turn based on Corollary 2.3.2 from
Section 2.3. Lemma 2.4.3 states that when a winning bidder increases her bid, the
allocation algorithm X̂ may only increase the number of bidders it serves.

Lemma 2.4.3. For every value profile v, bidder i ∈ X̂(v) and every v′
i > vi, it holds

that |X̂(v)| ≤ |X̂(v′
i, v−i)|.

Proof. Suppose for contradiction that this is not true, i.e., there exists a profile v with
a bidder i ∈ X̂(v) and a bid v′

i > vi for which |X̂(v)| > |X̂(v′
i, v−i)|. Since i ∈ X∗(v)

and due to the fact that the welfare-maximizing algorithm is monotone, it holds that
i ∈ X∗(v′

i, v−i) as well. Let s be the ordering of the players in X∗(v), produced by
the mechanism at step 2, on input v, and let s′ be the corresponding ordering of
bidders in X∗(v′

i, v−i) on input (v′
i, v−i). Let k = |X̂(v)| and k′ = |X̂(v′

i, v−i)|. By our
assumption, k′ < k. Bidder i can only be at a lower index in the ranking s′ compared
to her position at s, since she has unilaterally deviated to v′

i > vi. This implies that
vs′

k
≥ vsk

. Indeed, either the bidder at position k in s′ has remained the same but with
equal or higher value (in case bidder i is at position k) or bidder i has moved up in the
ranking and it has displaced some bidder with a higher value, i.e., with an initial index
sj < sk to position k. However, this yields

k · vs′
k

≥ k · vsk
≥ MREV(v)

Hn

≥ MREV(v′
i, v−i)

Hn

.
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The second inequality follows from what we have assumed for the execution of the
mechanism on input v, whereas the third inequality follows from Equation (2.14) of
Corollary 2.3.2. This means that k bidders can still be served on input (v′

i, v−i), and
hence k′ is not the largest index of bidders who can meet the cutoff of (2.15) under
(v′

i, v−i). This is a contradiction.

We now prove that the allocation algorithm X̂ is monotone.

Lemma 2.4.4. The allocation algorithm X̂ is monotone, i.e., given a profile v, for
every bidder i ∈ X̂(v) and every v′

i > vi it is true that i ∈ X̂(v′
i, v−i).

Proof. Given a profile v, fix a bidder i ∈ X̂(v). Suppose this bidder unilaterally
declares a bid v′

i > vi. We will show that bidder i remains in the set of final winners
X̂(v′

i, v−i), for v′
i > vi. Recall that the mechanism we propose, given a profile v finds

an initial provisional allocation X∗(v) and then selects a X̂(v) ⊆ X∗(v). Hence, for
all v′

i > vi, we need to argue both that i ∈ X∗(v′
i, v−i) and i ∈ X̂(v′

i, v−i).
For the first step, the allocation algorithm X̂ calls X∗, and since the welfare-

maximizing algorithm X∗ is monotone it holds that i ∈ X∗(v′
i, v−i), for all v′

i > vi. For
the second step, since bidder i has unilaterally declared a bid v′

i > vi, we can be certain
her index in the ranking among bidders in X∗(v) = X∗(v′

i, v−i), can only be lower. By
Lemma 2.4.3, we know that |X̂(v)| ≤ |X̂(v′

i, v−i)|, which implies that the allocation
algorithm has picked a superset of X̂(v). Hence, bidder i will be a part of the new
optimal allocation X̂(v′

i, v−i).

2.4.3 Payments and Revenue Guarantee

By Lemma 2.4.4 the allocation rule X̂ is monotone and hence, by Myerson’s Lemma,
each bidder must pay her threshold price, to obtain a mechanism that is incentive
compatible and individually rational in a single-parameter setting. Hence, with regard
to the proof of Theorem 2.4.1, the only statement we are left to prove is that M̂ = (X̂, p̂)
is O(log n)-core-competitive. Lemma 2.4.5 provides a relationship that is satisfied by
the threshold payment of each winning bidder and that will be crucial to obtain this
revenue guarantee.

Lemma 2.4.5. Given a value profile v, the threshold payment p̂i(v) of every bidder
i ∈ X̂(v) for the mechanism M̂ = (X̂, p̂) satisfies p̂i(v) ≥ pV CG

i (v) and, additionally,

p̂i(v) ≥ MREV(p̂i(v), v−i)
|X̂(p̂i(v), v−i)| · Hn

. (2.16)
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Proof. Fix a bidder i ∈ X̂(v). By definition, her threshold payment p̂i(v) is the
minimum bid v′

i ≤ vi she can unilaterally deviate to, so that i ∈ X̂(v′
i, v−i). Recall

that, for every profile v, the first step of the allocation algorithm X̂ is to find the
optimal allocation X∗(v). Hence, since by Myerson’s Lemma, the threshold payments
for the algorithm X∗ are the VCG payments, we can establish that p̂i(v) ≥ pV CG

i (v).
To prove (2.16), consider a bid v′

i which also survives step 2, so that i ∈ X̂(v′
i, v−i).

In order for i to be included in an optimal allocation, v′
i must be large enough so that

Equation (2.15) is satisfied for the profile (v′
i, v−i). Suppose v′

i = p̂i(v). Let s′ be the
ordering of the bidders produced by step 2 of the mechanism, and let k = |X̂(p̂i(v), v−i)|.
By Equation (2.15) it holds that

k · vs′
k

≥ MREV(p̂i(v), v−i)
Hn

⇔ vs′
k

≥ MREV(p̂i(v), v−i)
k · Hn

. (2.17)

Additionally, since i ∈ X̂(p̂i(v), v−i), her bid cannot be smaller than the bid of the
last bidder included in X̂(p̂i(v), v−i), as otherwise she would not win. Therefore,
p̂i(v) ≥ vs′

k
and the proof follows by combining this fact with Equation (2.17).

We can now prove the revenue guarantee and conclude the proof of Theorem 2.4.1.

Lemma 2.4.6. The mechanism is O(logn)-core-competitive.

Proof. Given a vector v, the total revenue of the auctioneer is the sum of the threshold
payments of bidders in X̂(v). Recall that for every bidder i ̸∈ X̂(v), p̂i(v) = 0 by
Myerson’s Lemma. Hence, we can lower bound the total revenue of the auctioneer as
follows:

∑
j∈X̂(v)

p̂j(v) ≥
∑

i∈X̂(v)

MREV(p̂i(v), v−i)
|X̂(p̂i(v), v−i)| · Hn

≥
∑

i∈X̂(v)

MREV(v)
|X̂(p̂i(v), v−i)| · Hn

≥
∑

i∈X̂(v)

MREV(v)
|X̂(v)| · Hn

= MREV(v)
Hn

.

The first inequality follows from Lemma 2.4.5 (Equation (2.16)). To obtain the second
inequality, for every bidder i ∈ X̂(v), we apply Corollary 2.3.2 for the profile (p̂i(v), v−i).
Note that the vector (p̂i(v), v−i) satisfies the conditions of Corollary 2.3.2 since, by
Lemma 2.4.5 it is also true that p̂i(v) ≥ pV CG

i (v). Finally, we obtain the third inequality
by applying Lemma 2.4.3 regarding the same profile and deviation.
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2.5 A Class of Non-decreasing Quadratic Payment
Rules

In this section, we illustrate a second application of our results of Section 2.3, focusing
on an important family of quadratic core-selecting payment rules.

2.5.1 Quadratic Payment Rules

As we have mentioned in Section 2.2, when VCG payments are not in the core, the
solution space of MRCS payments is always a continuum, in which case the linear
program of Equation (2.4) has infinitely many solutions. Even though, as discussed in
Section 2.2, all these solutions in this face of the core polytope, have been shown by
Day and Raghavan (2007) to minimize the gain of deviating, the question remained
whether one of these points should be preferred over others and whether there is a
disciplined way to single out a solution. This motivated Erdil and Klemperer (2010)
and Day and Cramton (2012) to propose a class of core-selecting mechanisms, based
on the idea of picking the point on the minimum revenue face of the core that is the
closest in Euclidean distance to a given reference point. This payment rule can be
expressed using two mathematical programs: the linear program of Equation (2.6) to
compute first MREV(b), and then a quadratic program, as defined below.

Definition 2.5.1. Let r ∈ Rn
+. We call a payment rule r-nearest when, for every

vector b, it assigns the payment

pr(b) = arg min
p∈Rn

{ ∑
j∈X∗(b)

(pj − rj)2 : p ∈ CORE(b),
∑

j∈X∗(b)
pj = MREV(b)

}
.

(2.18)

In words, the quadratic program of (2.18) assigns for a bidding profile b, the MRCS
payment in the core that is the closest to a given vector r. Alternatively, this quadratic
program can be also defined without the MRCS constraint. In this case, it has been
shown by Parkes et al. (2001), that the minimum revenue may not be achieved for
certain reference points even for minimization objectives that result to Pareto-efficient
payments. In this section, we stick to the version that contains the MRCS constraint.
Moreover, since the quadratic program in (2.18) expresses a minimization of Euclidean
distance from a convex set to a fixed point, the following well-known fact is true.

Fact 2.5.1. Given vectors r and b, the payment vector pr(b) is unique.
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A number of vectors have been proposed as the reference point r, for this class of
payments. Initially, Day and Cramton (2012) used the VCG payments for a reference
point, r = pV CG(b), as a refinement of MRCS. The motivation of this choice was the
findings of Parkes et al. (2001), who observed that given a profile b and a payment
p ∈ CORE(b), the quantity pi − pV CG

i (b) represents the bidder’s "residual incentive to
misreport". Hence, minimizing this quantity (or rather, its square) seemed a reasonable
choice w.r.t. incentives. In parallel to this, Erdil and Klemperer (2010), developed a
different perspective of what r should be. They leaned more towards constant payment
rules with reference points that do not depend on the bidding profile, as their goal was
to minimize marginal incentives to deviate. One well-studied and intuitive example is
the 0-nearest mechanism: pick the point in MRCS that is closest to 0. Yet another
perspective was given by Ausubel and Baranov (2020), who have proposed the b-nearest
payment rule, i.e., the MRCS payments closest to the actual bid. Overall, quadratic
rules form a family of core-selecting mechanisms with many deployments in practice
in several countries, especially for spectrum and other public sector auctions, see Day
and Cramton (2012).

2.5.2 A Class of Non-Decreasing Quadratic Payment Rules

We now consider the following desirable property for payment rules.

Definition 2.5.2. A payment rule is called non-decreasing, if for every profile b, every
bidder i ∈ N and every b′

i > bi it holds that

pi(b′
i, b−i) ≥ pi(b). (2.19)

This notion has been defined independently in Erdil and Klemperer (2010) and
Bosshard et al. (2018), with a different motivation in mind. In Erdil and Klemperer
(2010), it is argued that payment rules satisfying this property6 weakly dominate all
other payment rules in terms of the so called marginal incentive to deviate. Hence, even
though such mechanisms may not be truthful, they possess very desirable incentive
guarantees. In Bosshard et al. (2018), another advantage of this property is highlighted,
which is of computational nature: limiting our attention to non-decreasing payment
rules makes the daunting task of computing Bayes Nash equilibria much simpler.

Hence, it becomes important to understand which mechanisms satisfy this property.
It can be seen that the VCG mechanism and the pay-your-bid auction do satisfy (2.19).

6Erdil and Klemperer originally called these rules monotonic.
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In the context of MRCS rules, it is shown by Bosshard et al. (2018), that pV CG-nearest
is not non-decreasing. To our knowledge, it has remained an open question whether
there exist7 MRCS rules that satisfy (2.19).

We answer this question in the affirmative, by providing a class of quadratic rules
that are non-decreasing. To proceed, given a vector b, for all i ∈ N , define fi(bi) to be
any non-decreasing function of bi. Let f(b) = (f1(b1), . . . , fn(bn)). The following is the
main result of this section.

Theorem 2.5.1. For every f = (f1(·), . . . , fn(·)), where each fi(·) is a non-decreasing
function of bi, the f(b)-nearest payment rule is non-decreasing for binary single-
parameter auction domains.

Proof. For a profile b, let p(b) be the payment vector of the f(b)-nearest rule. Suppose
for a contradiction that (2.19) is not satisfied, i.e., there exists a profile b, a bidder
i ∈ X∗(b), and a bid b′

i > bi for which

pi(b′
i, b−i) < pi(b). (2.20)

Note that due to the monotonicity of X∗, it holds that X∗(b) = X∗(b′
i, b−i) for b′

i > bi.
Since f(b)-nearest is a Pareto-efficient payment rule, by Lemma 2.3.2, for the deviating
bidder i it holds that pi(b) ≤ bi. By combining this fact along with (2.20), we obtain
that pi(b′

i, b−i) < bi. In its turn, by Theorem 2.3.2 we have that

p(b′
i, b−i) ∈ CORE(b). (2.21)

Equation (2.21) implies that the optimal solution for the profile (b′
i, b − i) is actually a

member of the initial core polyhedron defined for the vector b. We distinguish that
each of the following cases leads to a contradiction:

1. pi(b) = pV CG
i (b): By (2.20), we know that pi(b′

i, b−i) < pi(b), hence pi(b′
i, b−i) <

pV CG
i (b). But under the profile (b′

i, b−i), bidder i cannot be asked to pay a
payment that is less than pV CG

i (b), as this would violate the constraint for
coalition N \ {i} in (2.3), implying that p(b′

i, b−i) ̸∈ CORE(b′
i, b−i).

2. pi(b) > pV CG
i (b) and MREV(b′

i, b−i) < MREV(b): In this case, the solution
p(b′

i, b−i) achieves a strictly lower minimum revenue when compared to p(b).
However, by (2.21), p(b′

i, b−i) ∈ CORE(b), which is a contradiction since it
implies that the solution p(b) is not an MRCS solution of CORE(b).

7In Bosshard et al. (2018) it was initially claimed that two non-MRCS rules are non-decreasing,
however this was later retracted in their corrigendum in Bosshard et al. (2022).
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3. pi(b) > pV CG
i (b) and MREV(b′

i, b−i) = MREV(b): To analyze this case, let us
first define for every vector r, the function D(b, r) := ∑

j∈X∗(b)(pj(b) − rj)2. For
a given profile b, D(b, f(b)) is the optimal value of the objective function of
f(b)-nearest. We now have the following implications:

D((b′
i, b−i), f(b′

i, b−i)) < D(b, f(b′
i, b−i))

= D(b, f(b)) +
(
fi(b′

i) − fi(bi)
) (

fi(b′
i) + fi(bi) − 2pi(b)

)
< D((b′

i, b−i), f(b)) +
(
fi(b′

i) − fi(bi)
) (

fi(b′
i) + fi(bi) − 2pi(b)

)
(2.22)

The first inequality follows from the fact that since p(b′
i, b−i) is the unique optimal

solution for CORE(b′
i, b−i), and since, by Theorem 2.3.1, p(b) is also a feasible

payment in CORE(b′
i, b−i), the value of the objective function D(b, f(b′

i, b−i))
must be strictly larger. We apply the same argument and obtain the last
inequality (Equation (2.22)) for the CORE(b) polyhedron, since by Equation
(2.21), p(b′

i, b−i) ∈ CORE(b). By rearranging terms, Equation (2.22) implies

(fi(b′
i) − fi(bi)) (2pi(b) − 2pi(b′

i, b−i)) < 0, (2.23)

a contradiction, since for b′
i > bi we have that fi(b′

i) ≥ fi(bi) by the monotonicity
of fi(·) and, by assumption pi(b) > pi(b′

i, b−i).

Notice that the class of f(b)-nearest rules captures both the well known 0-nearest
and b-nearest mechanisms that were advocated by Erdil and Klemperer (2010) and
Ausubel and Baranov (2020) respectively.

Corollary 2.5.1. The 0-nearest and the b-nearest payment rules are both non-
decreasing for binary single-parameter auction domains.



Chapter 3

The Discriminatory Price Auction:
Equilibria and Inefficiency

3.1 Introduction

Multi-unit auctions form a popular transaction means for selling multiple units of a
single good. They have been in use for a long time, and there are by now several practical
implementations across many countries. Some of the most prominent applications
involve government sales of treasury securities to investors, (e.g., see Brenner et al.
(2009)), as well as electricity auctions, for distributing electrical energy (e.g. see Rio
(2017)). Apart from governmental use, they are also run in other financial markets,
and they are being deployed by various online brokers (Ockenfels et al., 2006). In the
economics literature, multi-unit auctions have been a subject of study ever since the
seminal work of Vickrey (1961), and some formats were conceived even earlier, by
Friedman (1960).

Interestingly, according to the theory of core-selecting auctions discussed in Chapter
2, the VCG mechanism should be used for multi-unit auctions, as this is an auction envi-
ronment in which goods are substitutes1. However, despite these theoretical advantages,
simpler auction formats are often preferred in practice due to their ease of implementa-
tion and familiarity among bidders. One of these formats is the discriminatory price
auction, also referred to as pay-your-bid auction and its welfare performance is the
focus of this chapter2. In particular, we study the uniform bidding interface, which is
the format most often employed in practice. Under this format, each bidder submits

1In a multi-unit auction, the set of feasible allocations forms a (poly)matroid.
2A conference version with the results of this chapter appeared in WINE ’21 (Markakis et al.,

2022b).
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two parameters, a monetary per-unit bid, along with an upper bound on the number of
units desired. Hence, each bidder is essentially asked to declare a capped-additive curve
(a special case of submodular functions). The auctioneer then allocates the units by
satisfying first the demand of the bidder with the highest monetary bid, then moving
to the second highest bid, and so on, until there are no units left. As a price, each
winning bidder pays his bid multiplied by the number of units received.

It is easy to see that the discriminatory price auction is not a truthful mechanism
and the same holds for other auction formats used in practice. In recent years, a series
of works have studied the social welfare guarantees that can be obtained at equilibrium.
The outcome of these works is quite encouraging for the discriminatory price auction.
Namely, pure Nash equilibria are always efficient, whereas for mixed and Bayes-Nash
equilibria, the Price of Anarchy is bounded by 1.58 due to De Keijzer et al. (2013) for
submodular valuations. These results suggest that simple auction formats can attain
desirable guarantees and provide theoretical grounds for the overall success in practice.

Despite these positive findings, there has been no progress on further improving the
current Price of Anarchy bounds. The known lower bound of 1.109 by Christodoulou
et al. (2016b) is quite far from the upper bounds derived by the commonly used
smoothness-based approaches of De Keijzer et al. (2013); Syrgkanis and Tardos (2013),
which however do not seem applicable for producing further improvements. We believe
the main difficulty in getting tighter results is that one needs to delve more deeply into
the properties of Nash equilibria. But obtaining any form of characterization results
for mixed or Bayesian equilibria is a notoriously hard problem. Even with two bidders
it is often difficult to describe how the set of equilibria looks like. This is precisely the
focus of our work, where we manage to either partially or fully characterize equilibrium
profiles towards obtaining improved Price of Anarchy bounds, as we outline below.

3.1.1 Contribution

Motivated by the previous discussion, in Section 3.3 we initiate an equilibrium analysis
for mixed equilibria. We consider bidders with capped-additive valuations, which is
a subclass of submodular valuations, consistent with the underlying bidding format.
Our results can be seen as a partial characterization of inefficient mixed equilibria,
and our major highlights include both structural properties on the demand profile (see
Theorem 3.3.3), as well as properties on the distributions of the mixed strategies (see
Corollary 3.3.2, Theorem 3.3.4 and Lemma 3.3.12).

In Section 3.4, we use these results to derive new lower and upper bounds on
the Price of Anarchy for mixed equilibria. For two bidders, we arrive at a complete
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characterization of inefficient equilibria and show an upper bound of 1.1095, which is
tight.3 For multiple bidders, we show that the Price of Anarchy is strictly worse, which
also improves the best known lower bound for submodular valuations by Christodoulou
et al. (2016b). We further present an improved upper bound of 4/3 for the special
case where there exists a "high" demand bidder. We believe these latter instances are
representative of the worst-case inefficiency that may arise, and refer to the relevant
discussion in Section 3.4.2. To summarize, our results show that in several cases, the
Price of Anarchy is even lower than the previous bound of De Keijzer et al. (2013) and
strengthen the perception that such auctions can work well in practice.

Finally, in Section 3.5, we also study Bayes-Nash equilibria, and we exhibit a
separation result that had been elusive so far: already with two bidders, the Price of
Anarchy for Bayes-Nash equilibria is strictly worse than for mixed equilibria. Such
separation results, though intuitive, do not hold for all auction formats. For example,
it has been shown by Christodoulou et al. (2016a) that in simultaneous second price
auctions with submodular valuations, the known tight bounds for mixed equilibria
extend to the Bayesian model via the smoothness framework of Roughgarden (2012).
This reveals that the Bayesian model in our setting introduces a further source of
inefficiency. Note that to obtain this result, we transform the underlying optimization
of social welfare at equilibrium to a well-posed variational calculus problem. This
technique may be of independent interest and have other applications in mechanism
design.

3.1.2 Related Work

The work of Ausubel and Milgrom (2002) was among the first ones that studied the
sources of inefficiency in multi-unit auctions. For the discriminatory price auction, the
Price of Anarchy was later studied in Syrgkanis and Tardos (2013), and for bidders with
submodular valuations, the currently best upper bound of e/(e − 1) ≈ 1.58 has been
obtained by De Keijzer et al. (2013) (both for mixed and for Bayes-Nash equilibria).
These results exploit the smoothness-based techniques, developed by Roughgarden
(2012); Syrgkanis and Tardos (2013). One can also obtain slightly worse upper bounds
for subadditive valuations, by using a different methodology, based on Feldman et al.
(2020). As for lower bounds, the only construction known for submodular valuations

3In Christodoulou et al. (2016b), there is a lower bound of 1.109 that applies to our setting with
two bidders and three units. The lower bound we provide here is just slightly better, but most
importantly, it is tight and can be seen as a generalization of the instance in Christodoulou et al.
(2016b) to many units.
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is by Christodoulou et al. (2016b), yielding a bound of at least 1.109. In parallel
to these results, there has been a series of works on the inefficiency of many other
auction formats, ranging from multi-unit to combinatorial auctions, see among others,
Bhawalkar and Roughgarden (2011); Birmpas et al. (2019); Christodoulou et al. (2016a);
Feldman et al. (2020).

Apart from social welfare guarantees, several other aspects or properties of equi-
librium behavior have been studied. Recently in Pycia and Woodward (2021), a
characterization of equilibria is given for a model where the supply of units can be
drawn from a distribution. In the past, several works have focused on revenue equiva-
lence results between the discriminatory price and the uniform price auction, see e.g.
Ausubel et al. (2014); Swinkels (2001). On a different direction, comparisons from the
perspective of the bidders are carried out in Baisa and Burkett (2018).

For a more detailed exposition on multi-unit auctions and their earlier applications,
we refer the reader to the books of Krishna (2002) and Milgrom (2004). For more
recent applications, we refer to Brenner et al. (2009); Goldner et al. (2020); Rio (2017),
for treasury bonds, carbon licence auctions, and electricity auctions, respectively.

3.2 Notation and Definitions

We consider a discriminatory price multi-unit auction, involving the allocation of k

identical units of a single item, to a set N = {1, . . . , n} of bidders. Each bidder i ∈ N
has a private value vi > 0, which reflects her value per unit and a private demand
di ∈ Z+ which reflects the maximum number of units bidder i requires. Therefore, if
the auction allocates xi ≤ k units to bidder i, her total value will be min{xi, di}·vi. We
note that this class of valuations is a subclass of submodular valuations, and includes
all additive vectors (when di = k). We will refer to them as capped-additive valuations.

We focus on the following simple format for the discriminatory price auction, which
is known as the uniform bidding interface. The auctioneer asks each bidder i ∈ N
to submit a tuple (bi, qi), where bi ≥ 0, is her monetary bid per unit (not necessarily
equal to vi), and qi is her demand bid (not necessarily equal to di). We denote by
b = (b1, . . . , bn) the monetary bidding vector, and similarly q will be the declared
demand vector. For a bidding profile (b, q), the auctioneer allocates the units by
satisfying first the demand of the bidder with the highest monetary bid, then moving to
the second highest bid, and so on, until there are no units left. Hence, all the winners
have their reported demand satisfied, except possibly for the one selected last, who
may be partially satisfied. Moreover, we assume that in case of ties, a deterministic
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tie-breaking rule is used, which does not depend on the input bids submitted by the
players to the auctioneer (e.g., a fixed ordering of the players suffices).

For every bidding profile (b, q), we let xi(b, q) be the number of units allocated to
bidder i, where obviously xi(b, q) ≤ qi. In the discriminatory auction, the auctioneer
requires each bidder i to pay bi per allocated unit, hence a total payment of bi · xi(b, q).
The utility function of bidder i ∈ N , given a bidding profile (b, q), is: ui(b, q) =
min{xi(b, q), di}vi − xi(b, q)bi.

Viewed as games, these auctions have an infinite pure strategy space, and we also
allow bidders to play mixed strategies, which are probability distributions over their set
of pure strategies. When each bidder i ∈ N uses a mixed strategy Gi, she independently
draws a bid (bi, qi) from Gi. We refer to G = ×n

i=1Gi as the product distribution of
bids. Under mixed strategies, the expected utility of a bidder i is E(b,q)∼G[ui(b, q)].

Definition 3.2.1. We say that G is a mixed Nash equilibrium when for all i ∈ N , all
b′

i ≥ 0 and all q′
i ∈ Z+

E
(b,q)∼G

[ui(b, q)] ≥ E
(b−i,q−i)∼G−i

[ui((b′
i, b−i), (q′

i, q−i))] .

We note that in any equilibrium, if a bidder i declares with positive probability
a bid that exceeds vi, she should not be allocated any unit, since such strategies are
strictly dominated by bidding the actual value vi.

Fact 3.2.1. Let G be a mixed Nash equilibrium. The probability that a bidder i is
allocated some units, conditioned that she bids higher than vi, is 0.

In the sequel, we focus on equilibria, where the monetary bids never exceed the
value per unit.

Given a valuation profile (v, d), we denote by OPT (v, d) the optimal social welfare
(which can be computed very easily by running the allocation algorithm of the auction
with the true value and demand vector). We also denote by SW (G) the expected social
welfare of a mixed Nash equilibrium G, i.e., equal to E(b,q)∼G[∑i min{xi(b, q), di}vi].
The Price of Anarchy is the worst-case ratio OP T (v,d)

SW (G) , over all valuation profiles (v, d),
and all equilibria G.

We refer to an equilibrium as inefficient when its social welfare is strictly less than
the optimal.
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3.3 Towards a Characterization of Inefficient Mixed
Equilibria

In this section, we derive a series of important properties, that help us understand
better how can inefficient equilibria arise. These properties will help us analyze the
Price of Anarchy in Section 3.4.

3.3.1 Mixed Nash Equilibria with Demand Revelation

Our first result is that it suffices to focus on equilibria where bidders truthfully reveal
their demand, resulting therefore in a single-parameter strategy space for the bidders
(Theorem 3.3.1). We further argue that the inefficiency in equilibria appears only when
the total demand exceeds k (Lemma 3.3.6) and therefore this is what we assume for
the rest of the chapter.

Theorem 3.3.1. Let (v, d) be a valuation profile, and G be a mixed Nash equilibrium.
Then, for every i ∈ N , and in every pure strategy profile (bi, qi) ∼ Gi, we can replace
qi by di, so that the resulting distribution remains a mixed Nash equilibrium with the
same social welfare.

Proof. We prove this theorem by a series of lemmas. The first step is the next lemma,
showing that it suffices to consider only equilibria, where nobody declares a demand
bid that is lower than their true demand.

Lemma 3.3.1. Let G be any mixed Nash equilibrium and G′
i be the same as Gi after

replacing any qi < di with di. Then G′ is also a mixed Nash equilibrium with the same
social welfare.

Proof. We use first the following auxiliary lemma.

Lemma 3.3.2. Let G be any mixed Nash equilibrium where there exists a bidder i such
that Pr[bi = vi, qi < di] > 0 for (b, q) ∼ G. Let G′

i be the same as Gi after replacing
any qi < di with di. Then G′ is also a mixed Nash equilibrium with the same social
welfare.

Proof. First note that E(b,q)∼G[ui(b, q)] = 0, since bidder i bids vi with positive
probability that results in zero utility (see also Lemma 3.3.2). Let βk

−i be the random
variable expressing the kth maximum payment under G−i. Then Pr[βk

−i < vi] = 0,
because if βk

−i takes a value less than vi with positive probability, bidder i has an
incentive to deviate to a bid less than vi and receive positive utility.
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For any bidder j, with vj > vi, and any bidding profile (b, q) ∼ G, such that
xi(b, q) > 0 and xj(b, q) < qj , it holds that bj ≤ bi = vi (apart maybe from cases that
appear with zero probability). Then, Pr[xi(b, q] > 0, xj(b, q) < qj) = 0, otherwise
there exists a sufficiently small ε > 0, such that bidder j has an incentive to deviate to
vi + ε and receive more units. Therefore, if bidders i and j bid both vi with positive
probability the tie-breaking rule is in favour of player j. The same tie-breaking rule
should be applied when bidder i increases his quantity bid and so, for any bidding
profile (b, q) ∼ G, xj(b, q) = xj(b, (di, q−i)).

For any bidder j, with vj ≤ vi, bidder j cannot get any unit by paying less that vi

since Pr[βk
−i < vi] = 0. Therefore bidder j may receive units with positive probability

only if vj = vi and his expected utility is zero.
Overall, if bidder i deviates from Gi to G′

i, either the allocation of the players
remains the same (so they still have no incentive to deviate) or they have zero utility
(and still no incentive to deviate) and the allocation may change between bidders of the
same valuation; so the expected social welfare remains the same and the new strategy
profile is a mixed Nash equilibrium.

We continue now with the proof of Lemma 3.3.1. Starting by G, we recursively
show that if one by one the bidders deviate to G′

i, the bidding profile remains an
equilibrium with the same social welfare. It is sufficient to show this for (G′

i, G−i).
First note that, according to the tie-breaking rule, if i deviates from Gi to G′

i, he
can only get more units as he only declares the same or more demand. Let Si be the
set of bids (bi, qi) such that qi < di and

E
(b−i,q−i)∼G−i

[xi((bi, b−i), (qi, q−i))] < E
(b−i,q−i)∼G−i

[xi((bi, b−i), (di, q−i))]

It should be that for (b, q) ∼ G, Pr[(bi, qi) ∈ Si, bi < vi] = 0, otherwise bidder i would
increase her utility by deviating from (bi, qi) ∈ Si to (bi, di). So, the only case that
bidder i may increase his allocation by increasing his demand to di is when he bids his
value, in which case the lemma follows by Lemma 3.3.2.

So far we have shown that for any bid (bi, qi) such that qi < di and bi < vi the
expected allocation to bidder i remains the same if he deviates to (bi, di), apart maybe
from cases that appear with zero probability. It remains to show that under (G′

i, G−i)
the allocation to all bidders remains the same. Note that i deviating from Gi to G′

i

can only cause other bidders to be allocated less or the same number of units due to
the tie breaking rule. Given any (bi, qi) ∼ Gi with qi < di, let S−i(bi, qi) = S−i be the
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set of bidding profiles (b−i, q−i) ∼ G−i such that there exists a bidder j ̸= i, receiving
less units by the deviation of i, i.e., xj(b, q) > xj(b, (di, q−i)), where b = (bi, b−i), and
q = (qi, q−i).

For the sake of contradiction suppose that, under G−i, Pr[(b−i, q−i) ∈ S−i] > 0.
By summing over all bidders but i and taking the expectation over G−i, we have that

E
(b−i,q−i)∼G−i

[
∑
j ̸=i

xj(b, q)] > E
(b−i,q−i)∼G−i

[
∑
j ̸=i

xj(b, (di, q−i))] .

This means that E(b−i,q−i)∼G−i
[xi(b, q)] < E(b−i,q−i)∼G−i

[xi(b, (di, q−i))] which leads
to a contradiction.

The next step is to prove (in Lemma 3.3.3) that if ∑
i di > k, then it is sufficient

to consider only Nash equilibria, where nobody declares more demand that their true
demand.

Lemma 3.3.3. Suppose that ∑
i di > k and let G be any mixed Nash equilibrium where

nobody declares less demand and G′
i be the same as Gi after replacing any qi > di with

di. Then G′ is also a mixed Nash equilibrium with the same social welfare.

Proof. The proof is established by the following two lemmas.

Lemma 3.3.4. For any Nash equilibrium G where nobody declares less demand, if
Pr[xi(b, q) > di] > 0 for (b, q) ∼ G, then E[bi | xi(b, q) > di] = 0.

Proof. Suppose on the contrary that E[bi | xi(b, q) > di] > 0. We will show that bidder
i has an incentive to declare her true demand instead of a higher demand.

E[ui(b, q)] = Pr[xi(b, q) > di]E[ui(b, q) | xi(b, q) > di]

+ Pr[xi(b, q) ≤ di]E[ui(b, q) | xi(b, q) ≤ di]

= Pr[xi(b, q) > di]E[di(vi − bi) − (xi(b, q) − di)bi | xi(b, q) > di]

+Pr[xi(b, q) ≤ di]E[xi(b, q)(vi − bi) | xi(b, q) ≤ di]

= Pr[xi(b, q) > di]E[di(vi − bi) | xi(b, q) > di]

+Pr[xi(b, q) ≤ di]E[xi(b, q)(vi − bi) | xi(b, q) ≤ di]

−Pr[xi(b, q) > di]E[(xi(b, q) − di)bi | xi(b, q) > di]

= E[ui(b, di, q−i)] − Pr[xi(b, q) > di]E[(xi(b, q) − di)bi | xi(b, q) > di]

≤ E[ui(b, di, q−i)] − Pr[xi(b, q) > di]E[bi | xi(b, q) > di]

< E[ui(b, di, q−i)] ,
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where the last strict inequality is due to our assumption that E[bi | xi(b, q) > di] > 0.
The lemma follows by contradiction.

Lemma 3.3.5. If ∑
i di > k then in any Nash equilibrium G where nobody declares

less demand, Pr[xi(b, q) > di] = 0 for all i where (b, q) ∼ G.

Proof. Suppose on the contrary that there exists a bidder i such that Pr[xi(b, q) >

di] > 0. Then there is also a bidder j such that Pr[xi(b, q) > di, xj(b, q) < dj] > 0,
otherwise Pr[xj(b, q) ≥ dj, ∀j] = 1 which contradicts the fact that ∑

i di > k.
Given that xi(b, q) > di and xj(b, q) < dj, bidder j bids 0 (apart maybe for cases

that appear with zero probability), otherwise he should have received more units and
bidder i less units since by Lemma 3.3.4, bidder i bids 0 and receives at least one unit.
Then the expected utility of bidder j can be expressed as:

E[uj(b, q)] = Pr[xi(b, q) > di, xj(b, q) < dj ]E[xj(b, q)(vj − bj) | xi(b, q) > di, xj(b, q) < dj ]

+(1 − Pr[xi(b, q) > di, xj(b, q) < dj ])E[uj(b, q) | xi(b, q) ≤ di or xj(b, q) ≥ dj ]

≤ Pr[xi(b, q) > di, xj(b, q) < dj ]E[xj(b, q)vj | xi(b, q) > di, xj(b, q) < dj ]

+(1 − Pr[xi(b, q) > di, xj(b, q) < dj ])E[uj(b, q) | xi(b, q) ≤ di or xj(b, q) ≥ dj ] .

Consider now the bidding strategy (b′
j, qj) where b′

j = ε > 0 when bj = 0 and b′
j = bj

otherwise, for some ε < Pr[xi(b, q) > di, xj(b, q) < dj]vj/k. If bidder j deviates to
this strategy he should receive at least one more unit since he would bid more than
bidder i and his expected utility would be E ′ := E[uj(b′

j, b−j, q)]:

E′ = Pr[xi(b, q) > di, xj(b, q) < dj ]E[xj(b′
j , b−j , q)(vj − b′

j) | xi(b, q) > di, xj(b, q) < dj ]

+(1 − Pr[xi(b, q) > di, xj(b, q) < dj ])E[uj(b′
j , b−j , q) | xi(b, q) ≤ di or xj(b, q) ≥ dj ]

≥ Pr[xi(b, q) > di, xj(b, q) < dj ]E[(xj(b, q) + 1)(vj − ε) | xi(b, q) > di, xj(b, q) < dj ]

+(1 − Pr[xi(b, q) > di, xj(b, q) < dj ])E[uj(b, q) − kε | xi(b, q) ≤ di or xj(b, q) ≥ dj ]

≥ E[uj(b, q)] + Pr[xi(b, q) > di, xj(b, q) < dj ](vj − djε)

−(1 − Pr[xi(b, q) > di, xj(b, q) < dj ])kε

≥ E[ui(b, q)] + Pr[xi(b, q) > di, xj(b, q) < dj ]vj − kε

> E[ui(b, q)] ,

where the strict inequality comes from the definition of ε. This leads to a contradiction
that concludes the proof.

The remaining case that has not been covered by Lemma 3.3.3, is when the total
demand does not exceed k: ∑

i di ≤ k. But as we state in Lemma 3.3.6, these are
efficient equilibria.

The proof of Theorem 3.3.1 follows by combining Lemmas 3.3.1, 3.3.3 and 3.3.6.
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Lemma 3.3.6. If ∑
i di ≤ k then the social welfare of any mixed Nash equilibrium is

optimal.

Proof. If ∑
i di ≤ k, the optimum allocation appears when every bidder with positive

valuation receives a number of units more or equal to their true demand.
For the sake of contradiction suppose that there exists a Nash equilibrium G and a

bidder i such that Pr[xi(b, q) < di] > 0 for (b, q) ∼ G. Since nobody bids less than
their true demand, bidder i receives less units than di only because there are either
bidders bidding more than their true demand or bidders with zero valuation receive
units (or both). By Lemma 3.3.4, we have that Pr[maxj ̸=i:xj(b,q)>dj

bi = 0] = 0 and
the expected utility of bidder i can be expressed as follows:

E[ui(b, q)] = Pr[xi(b, q) < di]E[xi(b, q)(vi − bi) | xi(b, q) < di, max
j ̸=i,xj(b,q)>dj

bj = 0]

+Pr[xi(b, q) ≥ di]E[divi − xi(b, q)bi | xi(b, q) ≥ di]

≤ Pr[xi(b, q) < di]E[(di − 1)vi | xi(b, q) < di, max
j ̸=i,xj(b,q)>dj

bj = 0]

+Pr[xi(b, q) ≥ di]E[divi − xi(b, q)bi | xi(b, q) ≥ di] ,

where the inequality is due to the fact that in the first term xi(b, q) ≤ di − 1; further
note that in the first term bidder i loses units where the maximum of the other bids is
0, so he should have bid 0.

Consider now the bidding strategy (b′
i, qi) where b′

i = ε > 0 when bi = 0 and b′
i = bi

otherwise, for some ε < Pr[xi(b, q) < di]vi/k. Then the expected utility of bidder i

after deviating to this strategy is:

E[ui(b′
i, b−i, q)] = Pr[xi(b, q) < di]E[xi(b′

i, b−i, q)(vi − b′
i) | xi(b, q) < di, max

j ̸=i,xj(b,q)>dj

bj = 0]

+Pr[xi(b, q) ≥ di]E[divi − xi(b′
i, b−i, q)b′

i | xi(b, q) ≥ di]

≥ Pr[xi(b, q) < di]E[di(vi − ε) | xi(b, q) < di, max
j ̸=i,xj(b,q)>dj

bj = 0]

+Pr[xi(b, q) ≥ di]E[divi − xi(b, q)(bi + ε) | xi(b, q) ≥ di]

≥ E[ui(b, q)] + Pr[xi(b, q) < di](vi − diε) − Pr[xi(b, q) ≥ di]kε

≥ E[ui(b, q)] + Pr[xi(b, q) < di]vi − kε

> E[ui(b, q)] ,

where the strict inequality comes from the definition of ε. This leads to a contradiction
that concludes the proof.
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3.3.2 Existence of Non-empty-handed Bidders

For the remaining chapter, we consider only strategy profiles where the bidders’ demand
bid matches their true demand. The main goal of this subsection is to derive Theorem
3.3.3, where we show that in any inefficient mixed equilibrium, there always exists a
bidder such that the total demand of the other winners is strictly less than k, meaning
that at least one item is allocated to him for sure (with probability one). This is a
crucial property for understanding the formation of inefficient mixed equilibria. To
proceed, we give first some further notation to be used in this and the following sections.

Further notation. Given Theorem 3.3.1, instead of using distributions on tuples
(bi, qi), we suppose that each bidder i ∈ N independently draws only a monetary bid
bi from a distribution Bi and we refer to B = ×n

i=1Bi as the product distribution of
monetary bids or just bids from now on. For a bidding profile b, the utility of a bidder
i will simply be denoted as ui(b), instead of ui(b, d). Definition 3.2.1 is also simplified,
and we say that B is an equilibrium if Eb∼B[ui(b)] ≥ Eb−i∼B−i

[ui((b′
i, b−i))], for any i

and any b′
i ≥ 0. Similarly, the social welfare of a mixed Nash equilibrium B is given by

just SW (B).
For a mixed strategy bidding profile B, we denote by W (B) the set of bidders with

positive expected utility, i.e., W (B) = {j : Eb∼B[uj(b)] > 0}, and let BW = ×i∈W (B)Bi.
Moreover, the support of a bidder i in B is the domain of the distribution Bi, that
i plays under B, denoted by Supp(Bi). We denote by ℓ(Bi), h(Bi) the leftmost and
rightmost points, respectively, in the support of bidder i. In particular, if the rightmost
part of the domain of Bi is a mass point b or an interval in the form [a, b], then
h(Bi) = b, and similarly for ℓ(Bi). In cases of distributions over intervals, we can
safely assume that the domain contains only closed intervals, because the endpoints
are chosen with zero probability. We further denote by ℓ(BW ), h(BW ) the leftmost
and rightmost points, respectively, of the union of the supports of W (B).

For i = 1, . . . , n we denote by Fi the CDF of Bi and by fi their PDF. Moreover, given
a profile b, it is often useful in the analysis to consider the vector of bids (thresholds)
that a bidder i competes against, denoted by β(b)−i = (β1(b−i), . . . , βk(b−i)). Here,
βj(b−i) is the j-th lowest winning bid of the profile b−i, for j = 1, . . . , k, so that β(b)−i

describes the winning bids if i didn’t participate. This implies that, under profile b,
bidder i is allocated j = 1, . . . , k − 1 units capped by di, when βj(b−i) < bi < βj+1(b−i)
and di units, when βk(b−i) < bi. We note that because we focus on the uniform bidding
interface, some consecutive βj values may coincide and be equal to the bid of the same
bidder. When b−i ∼ B−i, for i = 1, . . . , n, we denote the CDF of the random variable
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βj(b−i) as F̂ij, for j = 1, . . . , k. In the next fact, we express the expected allocation of
any bidder i for bidding some α > 0, in terms of the values F̂ij(α).

Fact 3.3.1. Let B−i be a product distribution of bids. Then for all α ≥ 0, where no

bidder other than (possibly) i has a mass point, E
b−i∼B−i

[xi(α, b−i)] =
di∑

j=1
F̂ij(α) .

Given a bidding profile B, for any bidder i we define F̂ avg
i (x) =

∑di
j=1 F̂ij(x)

di
, to be the

average CDF of the winning bids that bidder i competes against. Note that F̂ avg
i is a

CDF since it is the average of a number of CDFs.

Remark 3.3.1. The F̂ij functions are right continuous, as they are CDFs, and
moreover, if the Fi functions have no mass point, the same holds for the F̂ij functions.
Additionally, if for any j, the F̂ij functions are continuous, so is F̂ avg

i , as the average
of continuous functions.

We start by ruling out certain scenarios that cannot occur at inefficient equilibria.
First, we can safely ignore bidders with zero expected utility, since in any inefficient
mixed Nash equilibrium they do not receive any units.

Lemma 3.3.7. Any mixed Nash equilibrium B with at least one bidder with zero
expected utility, but positive expected number of allocated units, is efficient.

Proof. Let i be such a bidder. Since i receives at least one unit with positive probability,
it holds that Pr[xi(b) > 0] > 0 for b ∼ B. There is only one possible case so that
bidder i has zero expected utility and this is that he bids his valuation when he receives
at least one unit (or more accurately, the probability that he bids less than his value
and receives at least one unit is zero).

First note that the payment for any unit is at least vi (apart maybe from cases that
appear with zero probability), otherwise bidder i has an incentive to bid less than vi

and get a positive utility. For any bidder j with vj > vi, Pr[xi(b) > 0, xj(b) < dj ] = 0,
otherwise there exists a sufficiently small ε > 0, such that bidder j has an incentive to
deviate from vi to vi + ε and receive more units. Therefore, it holds that

Pr[xj(b) = dj, ∀j with vj > vi | xi(b) > 0] = 1,

and since Pr[xi(b) > 0] > 0 it holds that

Pr[xj(b) = dj, ∀j with vj > vi] > 0.
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Since there are allocations where all bidders with higher valuation that vi receive their
demand, it is ∑

j:vj>vi
dj < k. Moreover, whenever bidders with valuation at most vi

receive units (these bidders must have zero expected utility since the lower payment is
vi), those bidders with valuation higher than vi receive their demand. Overall, bidders
with valuation higher than vi receive their demand with probability 1. The rest of the
units are given to bidders with valuation vi (because the payment is at least vi) which
leads to optimal social welfare.

Next, we show that to have inefficiency at an equilibrium, there must exist at least
two bidders with positive expected utility.

Lemma 3.3.8. Let (v, d) be a valuation profile and B be an inefficient mixed Nash
equilibrium. Then, |W (B)| ≥ 2.

Proof. Suppose on the contrary that there exists only one single bidder i with
Eb∼B[ui(b)] > 0 and for any other bidder j ̸= i, Eb∼B[uj(b)] = 0. By Lemma 3.3.7,
Eb∼B[xj(b)] = 0, for all j ̸= i and therefore, Eb∼B[xi(b)] = k. Moreover, since B is
inefficient there exists a bidder i′ ̸= i with vi′ > vi. Since i has a positive expected
utility, he receives the units in a price less than vi. If bidder i′ bids vi, he can satisfy
his demand which results in a positive expected utility leading to a contradiction.

The next warm-up properties involve the expected utility of a bidder under an
equilibrium B, conditioned that she bids within a certain interval or at a single point.
We start with Fact 3.3.2, which is a straightforward implication of the equilibrium
definition, and proceed by arguing that no two bidders may bid on the same point with
positive probability. Theorem 3.3.2 concludes by stating the main property regarding
the utility of bidders when bidding in their support.

Fact 3.3.2. Let B be an equilibrium. For a bidder i, consider a partition of Supp(Bi)
(or of a subset of it) into smaller disjoint sub-intervals, say I1, . . . , Iℓ, such that Bi

has a positive probability on each sub-interval (mass points may also be considered as
sub-intervals). Then, it should hold that Eb∼B[ui(b) | bi ∈ Ir] = Eb∼B[ui(b)], for every
r = 1, . . . , ℓ.

Based on Fact 3.3.2, we can obtain the following point-wise version. Variations of
the version below have also appeared in related works, see e.g., Christodoulou et al.
(2016b). For completeness, we present its proof in Section A.2 of Appendix A.

Theorem 3.3.2. Given a mixed Nash equilibrium B, bidder i and z ∈ Supp(Bi), where
no other bidder has a mass point on z, Eb−i∼B−i

[ui(z, b−i)] = Eb∼B[ui(b)].
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We further give the following observation regarding the existence of mass points on
ℓ(BW ).

Observation 3.3.1. In any inefficient mixed Nash equilibrium B, there can be no
bidders i, j ∈ W (B) such that both Pr[bi = ℓ(BW )] > 0 and Pr[bj = ℓ(BW )] > 0.

Proof. Let ℓ = ℓ(BW ) and for the sake of contradiction suppose that Pr[bi = ℓ] > 0 and
Pr[bj = ℓ] > 0. First note that xi(ℓ, b−i) > 0, otherwise, by Fact 3.3.2, Eb∼B[ui(b)] = 0
and i /∈ W (B) which is a contradiction. The same holds for bidder j.

By Lemma 3.3.6 we can infer that there exists a bidder with mass point on ℓ that
doesn’t receive his whole demand while bidding ℓ. W.l.o.g. let i be that bidder. Then,
we can find a small enough δ so that transferring all the mass from ℓ to ℓ + δ would
yield higher utility for i; the reason is that i would receive more units by winning
bidder j for whom we argued above that xi(ℓ, b−i) > 0.

The main theorem of this section follows, stating the existence of a special bidder,
who always receives at least one unit, and is referred to as non-empty-handed.

Theorem 3.3.3. Let (v, d) be a valuation profile, and let B be any inefficient mixed
Nash equilibrium. Then, there exists a bidder i ∈ W (B), such that

∑
j∈W (B)\{i}

dj ≤ k − 1 .

Proof. On the contrary, suppose that for every i ∈ W (B), ∑
j∈W (B)\{i} dj ≥ k. Let i

be some bidder with ℓ = ℓ(BW ) ∈ Supp(Bi). We distinguish two cases.
Case 1: There exists an interval in the form [ℓ, ℓ + ϵ], on which Bi has a positive
probability mass and on which the bidders of W (B) \ {i} have a zero mass. We note
that we also allow ϵ = 0, i.e., that i has a mass point on ℓ and the other bidders do not.
This means that when bidder i bids within [ℓ, ℓ + ϵ], all the other bidders from W (B)
are above him. Since we assumed that the total demand of W (B) \ {i} is at least k,
bidder i does not win any units in this case. Since i bids with positive probability
in [ℓ, ℓ + ϵ], by Fact 3.3.2, we have Eb∼B[ui(b)] = 0, which contradicts the fact that
i ∈ W (b).
Case 2: Note that by Observation 3.3.1, it cannot happen that both bidder i and
at least one bidder j ∈ W \ {i}, have a mass point on ℓ. Hence, the only remaining
case to consider is that any mass point that may exist by the bidders is at some x > ℓ,
and there is also no interval starting from ℓ that is used only by bidder i. Thus, there
exists an interval I in the form I = [ℓ, ℓ + ϵ] for some small enough ϵ > 0, and a bidder
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j ∈ W (B) \ {i}, such that both Bi and Bj contain I in their support, and have positive
probability mass on I without mass points.

By Theorem 3.3.2, we obtain that Eb−i∼B−i
[ui(ℓ, b−i)] = Eb∼B[ui(b)] > 0. This is a

contradiction, because by bidding ℓ, bidder i ranks lower than all other bidders of W (B)
with probability one. By our assumption that ∑

j∈W (B)\{i} dj ≥ k, there are no units left
for i when she ranks last among W (B), and therefore, Eb−i∼B−i

[ui(ℓ, b−i)] = 0.

The property above already implies the following interesting corollary, that if all
bidders have unit demand, any mixed Nash equilibrium is efficient.

Corollary 3.3.1. Let (v, d) be a valuation profile with only unit-demand bidders, i.e.,
di = 1 for all i. Then any mixed Nash equilibrium B is efficient.

Proof. If |W (B)| < 2 then, by Lemma 3.3.8, B is efficient. If |W (B)| ≥ 2, by
Theorem 3.3.3 there exist at most k bidders with positive expected utility. The rest of
the bidders have zero expected allocation by Lemma 3.3.7, otherwise B is efficient. The
only way that B is inefficient is if there exist bidders i and j with vi < vj and i ∈ W (B)
whereas j /∈ W (B). In such a case, E[xi(b)] > 0 and if bidder j bids vi + ε < vj,
E[xj(vi + ε, b−j)] > E[xi(b)] > 0, which results in a positive expected utility for bidder
j contradicting the fact that B is a Nash equilibrium.

3.3.3 The support and the CDFs of Mixed Nash Equilibria

The existence of a non-empty-handed bidder (Theorem 3.3.3) helps us to establish
further properties that characterize the structure of inefficient mixed Nash equilibria.
These properties (and especially Theorem 3.3.4) will be important to establish the
inefficiency results that follow. We start with an observation regarding the highest bid
of any bidder i ∈ W (B), which should be strictly less than vi.

Observation 3.3.2. For any bidder i ∈ W (B), h(Bi) < vi.

Proof. Suppose on the contrary that for some i ∈ W (B), h(Bi) = vi. Then, by
Theorem 3.3.2, Eb∼B[ui(b)] = Eb−i∼B−i

[ui(vi, b−i)] = 0, which contradicts the fact
that i ∈ W (B).

The next lemma shows that at any equilibrium B, bidders who are guaranteed units
cannot have higher bids in their support than the support of the non-empty-handed
bidders. Moreover, any bidder who is non-empty-handed does not have a reason to use
bids that are higher than the maximum bid of all other winning bidders. The reason is
that if such differences existed, then there would be incentives to win the same number
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of units by lowering one’s bid. Then, Lemma 3.3.10 shows that no bidder will bid alone
at any point or interval, and Lemma 3.3.11 specifies that no mass points may exist
apart from one case.

Lemma 3.3.9. Let (v, d) be a valuation profile and B be any inefficient mixed
Nash equilibrium. Then, for any non-empty-handed bidder i, it holds that h(Bi) =
h(BW \{i}) = h(BW ).

Proof. Suppose for contradiction that i is a non-empty-handed bidder, and there exists
a bidder j ∈ W (B) \ {i} (non-empty-handed or not), such that h(Bj) > h(Bi). Since
j ∈ W (B), it must be that vj ≥ h(Bj) and bidder j obtains positive utility when
she bids in Supp(Bj) ∩ (h(Bi), h(Bj)] (otherwise j would have an incentive not to bid
above h(Bi)). Moreover, Eb∼B[xj(b) | bi ∈ (h(Bi), h(Bj)]] = dj, since outbidding a
non-empty-handed bidder guarantees the allocation of a bidder’s entire demand by
the auction. However, bidder j can then benefit from transferring probability mass
from (h(Bi), h(Bj)] to a point h(Bi) + δ, for some small enough δ > 0, since it still
guarantees the allocation of her entire demand but for a strictly better price and thus
strictly better expected utility. Hence, we have proved that h(Bj) ≤ h(Bi).

We will now also prove that h(Bi) ≤ maxj∈W (B)\{i} h(Bj). Consider a bidder
j ∈ W (B) \ {i}. If j is also non-empty-handed, then we can just repeat the argument
above by switching the places of i and j, and we are done. Otherwise, i is the only
non-empty-handed bidder and suppose h(Bi) > h(Bj) for every j ∈ W (B) \ {i}. Then,
whenever bidder i bids above every h(Bj), she ranks first, and hence she is granted all
her demand. But then, she has incentives to reduce her bid so that she is still above
every h(Bj) and win the same units at a lower price, which is a contradiction. So,
h(Bi) = h(BW \{i}). Then it is straightforward to see that h(BW \{i}) = h(BW ).

Lemma 3.3.10. Let (v, d) be any valuation profile and B be any mixed Nash equilib-
rium. For all i ∈ W (B), it holds that Supp(Bi) ⊆ ⋃

j∈W (B)\{i} Supp(Bj).

Proof. Fix a bidder i ∈ W (B) and let I ⊆ Supp(Bi) be any interval such that
I ⊈ ⋃

j∈W (B)\{i} Supp(Bj). We distinguish two cases: either I = [ℓ, h] for ℓ < h, or I is
an isolated point.
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For the first case we can establish that i would have an incentive to bid only on ℓ

and still win the same units at a lower price. Indeed,

E
b∼B

[ui(b) | bi ∈ I] = E
b∼B

[xi(bi, b−i)(vi − bi) | bi ∈ I]

= E
b∼B

[xi(ℓ, b−i)(vi − bi) | bi ∈ I]

< E
b−i∼B−i

[xi(ℓ, b−i)(vi − ℓ)]

The second equality is due to the fact that no other bidder in W (B) bids in I with
positive probability, whereas the strict inequality follows by the construction of I. This
inequality yields a contradiction, by Fact 3.3.2, since there exists a profitable transfer
of the probability mass of I to the point ℓ.

For the second case suppose that I is some isolated point z that i bids with positive
probability; z is isolated because we have assumed WLOG that all intervals defining
the domain of a distribution are closed. Let h = maxj∈W (B)\{i} h(Bj). If z > h, then i

would be benefited by transferring the probability of bidding z to any point between h

and z. If z < h, let z′ be the maximum point such that [z, z′) ⊈ ⋃
j∈W (B)\{i} Supp(Bj)

(note that z ̸= z′). Then, there exists a bidder i′ ̸= i such that, by Theorem 3.3.2,
Eb−i′ ∼B−i′ [ui′(z′, b−i′)] = Eb∼B[ui′(b)]. Bidding any bid between z and z′ would
result to a higher expected utility for bidder i′ than Eb−i′ ∼B−i′ [ui′(z′, b−i′)], which is a
contradiction to the fact that B is a Nash equilibrium.

Lemma 3.3.11. Let (v, d) be a valuation profile and B be any inefficient mixed Nash
equilibrium.
1) There exists no bidder i ∈ W (B) and no point z ∈ Supp(Bi) \ {ℓ(BW )}, with
Fi(z) > limz→z− Fi(z), i.e., there are no mass points among the bidders of W (B),
except possibly the leftmost endpoint of all bidders’ distributions.
2) At most one bidder i ∈ W (B) may have a mass point on ℓ(BW ), in which case, i is
a non-empty-handed bidder.

Proof. Regarding the first part of the statement, suppose, for contradiction, that
there exists a bidder i ∈ W (b), and a point z ∈ Supp(Bi) \ {ℓ(BW )} with Fi(z) >

limz→z− Fi(z). We next distinguish the following cases:
Case 1: There does not exist any bidder j ∈ W (B\{i}) with an interval I = [z−δ, z] ⊂
Supp(Bj) for some small enough δ > 0, with z − δ > ℓ(BW ). Then by Lemma 3.3.10 it
must also be that the interval [z − δ, z) is not in the support of bidder i. Furthermore,
I is not in the support of any other bidder, who do not belong to W (B) (since the
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interval I is to the right of ℓ(BW ), bidders not in W (B) cannot use an interval of this
form, because then they would have a positive probability of winning).

Thus, the only way that bidder i would not prefer to choose any bid ξ ∈ I, with
ξ < z, is when he doesn’t win the same number of units as when bidding z; this can
only happen when there exists another bidder i′ ∈ W (B) with a mass point on z and
the tie breaking rule favors bidder i. But in that case bidder i′ can transfer his mass
from z to a slightly higher bid 4 (similar to the proof of Observation 3.3.1) and receive
higher utility. This results to a contradiction of B being an equilibrium.
Case 2: There exists a bidder j ∈ W (B)\{i} with an interval I = [z−δ, z] ⊂ Supp(Bj)
for some small enough δ > 0. But then

E
b∼B

[uj(bj, b−j) | bj ∈ [z − δ, z]] = E
bj∼Bj

[ E
b−j∼B−j

[uj(bj, b−j)] | bj ∈ [z − δ, z]]

= lim
ξ→z−

E
b−j∼B−j

[uj(ξ, b−j)]

= lim
ξ→z−

E
b−j∼B−j

[xj(ξ, b−j)] lim
ξ→z

(vj − ξ)

= dj lim
ξ→z−

F̂ avg
j (ξ)(vj − z)

< dj lim
ξ→z+

F̂ avg
j (ξ)(vj − z)

The last equality in the above expressions is by Fact 3.3.1. The last inequality holds
because F̂ avg

j has a discontinuity at z due to the fact that i assigns positive probability
to z.

To conclude, the above series of equations imply that there exists a small enough ϵ

such that
E

b∼B
[uj(bj, b−j) | bj ∈ [z − δ, z]] < E

b−j∼B−j

[uj(z + ϵ, b−j)]

which contradicts B being an equilibrium.
Regarding the second part of the statement, by Observation 3.3.1 it cannot be

that two bidders have a mass point on ℓ(BW ). For the sake of contradiction, suppose
that there exists a bidder i with Pr[bi = ℓ(BW )] > 0 and i is not a non-empty-handed
bidder. Then, the rest of the bidders in W (B) bid higher than ℓ(BW ) with probability
one and therefore, bidder i doesn’t win any unit by bidding ℓ(BW ). By Theorem 3.3.2,
Eb∼B[ui(b)] = Eb−i∼B−i

[ui(ℓ(BW ), b−i)] = 0, which contradicts the fact that i ∈
W (B).

4Note that z < vi′ , otherwise, by Fact 3.3.2, Eb∼B[ui′(b)] = 0 and i′ /∈ W (B) which is a
contradiction.
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By combining Theorem 3.3.2 and Lemma 3.3.11 we get the following Corollary.

Corollary 3.3.2. For any inefficient mixed Nash equilibrium B, the following hold:
1) For any bidder i and z ∈ Supp(Bi) \ {ℓ(BW )}, Eb−i∼B−i

[ui(z, b−i)] = Eb∼B[ui(b)].
2) If there exists a bidder i with Pr[bi = ℓ(BW )] > 0, then i is a non-empty-handed
bidder and Eb−i∼B−i

[ui(ℓ(BW ), b−i)] = Eb∼B[ui(b)].
3) If no non-empty-handed bidder exists with mass point on ℓ(BW ), for any bidder i

with ℓ(BW ) ∈ Supp(Bi), Eb−i∼B−i
[ui(ℓ(BW ), b−i)] = Eb∼B[ui(b)].

Observation 3.3.3. For any inefficient mixed Nash equilibrium B, either there exists
a non-empty-handed bidder i ∈ W (B) with a mass point on ℓ(BW ), or there are at
least two non-empty-handed bidders with ℓ(BW ) in their support.

Proof. If there exists a bidder i with mass point on ℓ(BW ), then by Lemma 3.3.11 i is
a non-empty-handed bidder. If there is no such bidder then we argue that no bidder
j ∈ W (B) that is not non-empty-handed has ℓ(BW ) in their support.

Suppose on the contrary that ℓ(BW ) ∈ Supp(Bj) for some bidder j that is not
non-empty-handed. Then since no bidder has a mass point on ℓ(BW ), everybody bids
above ℓ(BW ) with probability one, leaving j with no units while bidding ℓ(BW ). By
Corollary 3.3.2, Eb∼B[uj(b)] = Eb−j∼B−j

[uj(ℓ(BW ), b−j)] = 0 contradicting the fact
that j ∈ W (B).

By Lemma 3.3.10 there are at least two bidders bidding on ℓ(BW ), which concludes
the proof.

Given any (inefficient) equilibrium, the next theorem specifies the average CDF of
the winning bids that bidder i competes against, i.e., F̂ avg

i , in i’s support.

Theorem 3.3.4. Let (v, d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Then, for i ∈ W (B), the CDF F̂ avg

i satisfies

F̂ avg
i (z) = ui

di(vi − z) , ∀z ∈ Supp(Bi) ,

where ui = Eb∼B[ui(b)] > 0.

Proof. Fix a bidder i ∈ W (B). For all intervals I ⊆ Supp(Bi), by Corollary 3.3.2 it
must be that for all z ∈ I \ ℓ(BW )

E
b−i∼B−i

[ui(z, b−i)] = E
b∼B

[ui(b)] = ui > 0 .
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The above equality is equivalent to

E
b−i∼B−i

[xi(z, b−i)] = ui

vi − z
⇔ F̂ avg

i (z) = ui

di(vi − z) ,

for all z ∈ Supp(Bi). The last equivalence is due to Fact 3.3.1. The theorem follows
since F̂ avg

i is right continuous.

A corollary of Theorem 3.3.4 is that the union of the support of the winners is an
interval.

Corollary 3.3.3. Let (v, d) be any valuation profile and B be any inefficient mixed Nash
equilibrium. Then, for every bidder i ∈ W (B), ⋃

j∈W (B)\{i} Supp(Bj) = [ℓ(BW ), h(BW )].

Proof. Suppose for contradiction that there exists an interval

(ℓ′, h′) ̸⊆
⋃

j∈W (B)\{i}
Supp(Bj)

with ℓ′ > ℓ(BW ), h′ < h(BW ) and this is maximal. Then, let i be a bidder with
h′ in their support. By Theorem 3.3.4, F̂ avg

i (h′) = ui

di(vi−h′) and Eb∼B[ui(b)] =
Eb−i∼B−i

[ui(h′, b−i)] = ui by Corollary 3.3.2.
For any x ∈ (ℓ′, h′), F̂ avg

i (x) = ui

di(vi−h′) , since (ℓ′, h′) ̸⊆ ⋃
j∈W (B)\{i} Supp(Bj).

Clearly, F̂ avg
i (x) > ui

di(vi−x) and by bidding x,

E
b−i∼B−i

[ui(x, b−i)] = diF̂
avg
i (x)(vi − x) > di

ui

di(vi − x)(vi − x) = ui = E
b∼B

[ui(b)] ,

which is a contradiction to B being an equilibrium.

The final lemma of this section shows that the rightmost point in the support of B
is a function of the parameters of certain non-empty-handed bidders.

Lemma 3.3.12. Let (v, d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Let i ∈ W (B) be the non-empty-handed bidder such that Pr[bi =
ℓ(BW )] > 0, or if no such bidder exists, then let i be any non-empty-handed bidder
with ℓ(BW ) in his support. We have

h(BW ) = h(Bi) = vi − (k −
∑

j∈W (B)\{i}
dj)

vi − ℓ(BW )
di

.

Proof. Let i be the bidder specified by the lemma’s statement; note that such a bidder
always exists by Observation 3.3.3. By Lemma 3.3.9, h(BW ) = h(Bi), and by applying



3.4 Price of Anarchy for mixed equilibria 57

Corollary 3.3.2, it must be that

E
b−i∼B−i

[ui(ℓ(Bi), b−i)] = E
b−i∼B−i

[ui(h(Bi), b−i)] . (3.1)

Moreover,

E
b−i∼B−i

[ui(h(Bi), b−i)] = E
b−i∼B−i

[xi(h(Bi), b−i)](vi − h(Bi)) = di(vi − h(Bi)) . (3.2)

Equation (3.2) holds since bidding h(Bi) guarantees outbidding every other bidder in
the auction and thus grants di units to i (recall that there is no mass point on h(Bi)
due to Lemma 3.3.11, and therefore the event of losing due to tie-breaking by bidding
h(Bi) has probability zero).

On the other hand, note that by the way i has been defined, ℓ(Bi) = ℓ(BW ) and
therefore

E
b−i∼B−i

[ui(ℓ(Bi), b−i)] = E
b−i∼B−i

[ui(ℓ(BW ), b−i)]

= E
b−i∼B−i

[xi(ℓ(BW ), b−i)](vi − ℓ(BW ))

= (k −
∑

j∈W (B)\{i}
dj)(vi − ℓ(BW )) , (3.3)

where in the last equality above, we have that k − ∑
j∈W (B)\{i} dj > 0, since i is

non-empty-handed. By equating now (3.2) and (3.3), the lemma follows.

3.4 Price of Anarchy for mixed equilibria

We can now exploit the properties derived so far for mixed equilibria, in order to
analyze the inefficiency of the discriminatory price auction. Since we focus on inefficient
equilibria, we assume that in any valuation profile considered in this section, there are
at least two bidders with a different value per unit.

3.4.1 The case of two bidders

We pay particular attention to the case of n = 2. This is a setting where we can fully
characterize in closed form the distributions of the inefficient mixed Nash equilibria,
and derive valuable intuitions for the worst-case instances with respect to the Price of
Anarchy, that are helpful also for auctions with multiple bidders. The main result of
this subsection is the following theorem, showing that the inefficiency is quite limited.
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Theorem 3.4.1. For k ≥ 2, n = 2 and capped additive valuation profiles, the Price of
Anarchy of mixed equilibria is at most 1.1095, and this is tight as k goes to infinity.

We postpone the proof of Theorem 3.4.1, as we first need to establish some properties
regarding the form of inefficient mixed Nash equilibria with two bidders. For n = 2, a
capped-additive valuation profile can be described as (v, d) = ((v1, d1), (v2, d2)). Recall
also that it is sufficient to focus our attention only on profiles where d1 + d2 > k, since
otherwise, by Lemma 3.3.6 any mixed equilibrium is efficient. We start our analysis by
characterizing the support of inefficient mixed Nash equilibria.

Lemma 3.4.1. Let (v, d) = ((v1, d1), (v2, d2)) be any capped-additive valuation profile
of two bidders, and B = (B1, B2) be any inefficient mixed Nash equilibrium. Then:

1. Supp(B1) = Supp(B2) = [ℓ(B1), h(B1)], and ℓ(B1) = 0.

2. h(B1) takes one of the following values

h(B1) = v1
d1 + d2 − k

d1
or h(B1) = v2

d1 + d2 − k

d2
.

Proof. To prove the first statement, by Lemma 3.3.10, we have that Supp(B1) =
Supp(B2). Also, by Corollary 3.3.3, we have that Supp(B1) is an interval. To prove
that ℓ(B1) = 0, we utilize Lemma 3.3.8 which states that |W (B)| ≥ 2. Thus, with
exactly two bidders, we have that |W (B)| = 2, and both bidders have positive expected
utility. Let ℓ = ℓ(B1) = ℓ(B2). If ℓ > 0, we will argue that one of the players has an
incentive to deviate to a lower bid.

Note first that by Observation 3.3.1, it cannot be that ℓ is a mass point for both
bidders. WLOG suppose that bidder 1 has a mass point at ℓ, which by Fact 3.3.2,
implies she has a positive expected utility, when playing ℓ. At the same time, bidder 2
bids higher than ℓ with probability equal to 1. Hence, there must be some left over
units that bidder 1 wins when bidding ℓ in order to have a positive expected utility.
But now this means that bidder 1 would have a profitable transfer of probability mass
to 0 in order to have a zero payment while obtaining the same number of units. If
neither bidder has mass on ℓ, we can use Corollary 3.3.2 to have that the expected
utility of bidder 1 at ℓ equals E[u1(b)] > 0. Hence, she wins some units with positive
probability when bidding ℓ. But then bidder 1 would win the same number of units by
bidding 0 resulting in higher utility, a contradiction to B being an equilibrium.

To prove the second statement of the lemma, we use Theorem 3.3.3 that states that
at least one of the bidders, say bidder i, is non-empty-handed and by Lemma 3.3.12
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we obtain
h(Bi) = vi

d1 + d2 − k

di

.

The following theorem specifies the cumulative distribution functions that comprise
any inefficient mixed Nash equilibrium, along with a necessary condition for the
existence of such equilibria. For a bidder i below, we use the notation v−i and d−i to
denote the value and demand of the other bidder.

Theorem 3.4.2. Let (v, d) = ((v1, d1), (v2, d2)) be a capped-additive valuation profile
of two bidders, and B = (B1, B2) be any inefficient mixed Nash equilibrium.

1. The cumulative distribution function of bidder i, for i = 1, 2, is

Fi(z) = 1
d1 + d2 − k

Å
d−i(v−i − h(Bi))

v−i − z
− (k − di)

ã
. (3.4)

2. Furthermore, for i being the non-empty-handed bidder with a mass point at 0,
or if no such bidder exists, being any non-empty-handed bidder, it holds that
v−i

vi
≥ d−i

di
,

Proof. It is convenient to look into the F̂ avg
i distribution to derive the claimed formulas.

In the two-bidder environment, the sole source of competition is a single bidder. Firstly,
for any bidder i, the other bidder always obtains k−di units5 and there is a competition
for the remaining di − (k − d−i) = d1 + d2 − k units. Therefore, for the competitor of
bidder i, we have:

F̂ avg
−i (z) =

∑d−i

j=1 F̂−i,j(z)
d−i

= k − di + (d1 + d2 − k)Fi(z)
d−i

.

Now by Theorem 3.3.4, for z ∈ Supp(B−i) (which is the same as Supp(Bi) by Lemma
3.4.1), we have

F̂ avg
−i (z) = u−i

d−i(v−i − z) ,

for some constant u−i > 0. By combining the last two equations and rearranging terms
we obtain

Fi(z) = 1
d1 + d2 − k

Å
u−i

v−i − z
− (k − di)

ã
.

5This is consistent with Theorem 3.3.3 since when a bidder is not non-empty-handed, it must be
that the demand of the other bidder is k, and hence, she obtains k − di = 0 free units, as expected.
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We now determine the appropriate value for u−i > 0 so that Fi(z) is a valid
cumulative distribution function in Supp(Bi). It must be that Fi(h(Bi)) = 1, since
h(Bi) is the rightmost point in her support. Hence,

1 = 1
d1 + d2 − k

Å
u−i

v−i − hi(Bi)
− (k − di)

ã
⇔ u−i = d−i(v−i − hi(Bi)) .

This establishes that Fi(z) satisfies Equation (3.4).
The second part of the theorem comes from the fact that the CDFs should also

satisfy non-negativity. For this, let i be the bidder specified by the second part of
the theorem’s statement. Then, by using Lemma 3.3.12 it is a matter of simple
calculations to see that Fi(0) ≥ 0 is equivalent to v−i

vi
≥ d−i

di
. Since Fi is increasing, we

have established that this condition is necessary to enforce that Fi(z) ≥ 0 for every
z ∈ Supp(Bi).

Remark 3.4.1. By Lemma 3.4.1 and Theorem 3.4.2, we can see that there can be
at most two inefficient equilibria, depending on how the interval of the support was
determined.

We are now ready to prove Theorem 3.4.1.
Proof of Theorem 3.4.1. The properties established so far imply a full character-
ization of instances that have inefficient equilibria. To establish Theorem 3.4.1, we
will group instances into three appropriate classes and we will solve an appropriately
defined optimization problem that approximates the Price of Anarchy for each subclass
to arbitrary precision.

WLOG, suppose we are given a value profile (v, d) = ((v1, d1), (v2, d2)) of k units
such that d1 ≥ d2. We define the following two quantities, which we refer to as the
normalized demands.

d̄1 = d1

k
> 0 d̄2 = d2

k
> 0 (3.5)

Essentially, we intend to use v1, v2, d̄1 and d̄2 as the variables of the optimization
problem mentioned before.

Let B be any inefficient mixed Nash equilibrium. With a slight abuse of notation we
view the term h(Bi) as a function of the valuation profile parameters, as established by
Lemma 3.4.1, and define the functions hi(v, d̄) = vi

d̄1+d̄2−1
d̄i

for i = 1, 2. We pair these
functions with two additional expressions SWi(v, d) for i = 1, 2 which are (scaled)
restatements of the social welfare of an equilibrium, solely in terms of the value profile
(v, d) and k, and without dependencies on the underlying equilibrium distributions.
The reason we are able to do so, is Theorem 3.4.2, which tells us what the CDFs are,
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in terms of the valuation profile. The exact form of SWi(v1, v2, d̄1, d̄2) for i = 1, 2 is

d̄−i(v−i − vi)
Ç

1 −
∫ hi(v,d̄)

0

1
d̄1 + d̄2 − 1

Ç
d̄i(vi − hi(v, d̄))

vi − z
− (1 − d̄−i)

å
v−i − hi(v, d̄)

(v−i − z)2 dz

å
+ vi.

With these expressions in mind, the following lemma allows us to obtain the social
welfare in a form that we can later exploit for producing our upper bound. The lemma
follows by Theorem 3.4.2, which tells us what the equilibrium CDFs are, in terms of
the valuation profile.

Lemma 3.4.2. Let i be a non-empty handed bidder with a mass point at 0. Then,
SW (B) = kSWi(v, d̄). If no such bidder exists, then either SW (B) = kSW1(v, d̄) or
SW (B) = kSW2(v, d̄).

To proceed, we will distinguish the following two cases.

1. If B = (B1, B2) is such that Supp(B1) = Supp(B2) = [0, v1
d1+d2−k

d1
], then, by

Lemma 3.4.2, SW (B) = kSW1(v, d̄) and by the second part of Theorem 3.4.2 it
must be that v2

v1
≥ d2

d1
or, equivalently, in terms of normalized demands as v2

v1
≥ d̄2

d̄1
.

We split the analysis into the following sub-cases:

(a) When v1 > v2, the optimal social welfare is determined by allocating bidder
1 her entire demand and, subsequently allocating bidder 2 the leftover units.
Therefore, in this case OPT (v, d) = v1d1 + (k − d1)v2 = k(v1d̄1 + (1 − d̄1)v2)
and OP T (B)

SW (B) = v1d̄1+(1−d̄1)v2
SW1(v1,v2,d̄1,d̄2) . Hence, the Price of Anarchy of mixed Nash

equilibria for this subclass is upper bounded by the optimal solution to the
following problem

max
v1,v2,d̄1,d̄2

v1d̄1 + (1 − d̄1)v2

SW1(v1, v2, d̄1, d̄2)

subject to 1 >
v2

v1
≥ d̄2

d̄1
.

(3.6)

(b) Similarly, when v1 < v2 the optimal social welfare is determined by allocating
bidder 2 her entire demand and, subsequently allocating bidder 1 the
leftover units. Therefore, in this case OPT (B) = v1(k − d2) + d2v2 =
k(v1(1 − d̄2) + v2d̄2) and the Price of Anarchy for this subclass is upper
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bounded by the optimal solution to the following problem

max
v1,v2,d̄1,d̄2

v1(1 − d̄2) + v2d̄2

SW1(v1, v2, d̄1, d̄2)
subject to v2 > v1.

d̄1 ≥ d̄2 .

1 > d̄2 .

(3.7)

Note that in this sub-case, we enforce the last constraint that d̄2 < 1
(implicitly enforced in the first sub-case). Since we assumed d1 ≥ d2, there
can be no mixed Nash equilibrium with d̄2 = 1, because then both bidders
are additive, violating the condition of Theorem 3.3.3.

2. The final case we need to consider is equilibria B = (B1, B2) such that Supp(B1) =
Supp(B2) = [0, v2

d1+d2−k
d2

] when d1 < k (recall if d1 = k bidder 1 is non-empty-
handed and the support will be as in the first case). As in the previous case, by
the second part of Theorem 3.4.2, it must be that v1

v2
≥ d1

d2
. However, unlike the

class of equilibria described in the previous paragraph, it is sufficient to consider
here only the case when v1 > v2 since, due to our assumption that d1 ≥ d2, the
condition v1

v2
≥ d1

d2
implies that there cannot exist mixed Nash equilibria when

v1 < v2. Thus, the Price of Anarchy for this subclass is upper bounded by

max
v1,v2,d̄1,d̄2

v1d̄1 + (1 − d̄1)v2

SW2(v1, v2, d̄1, d̄2)

subject to v1

v2
≥ d̄1

d̄2
≥ 1

1 > d̄2 .

(3.8)

By solving numerically the optimization problems of Equations (3.6), (3.7) and (3.8), we
found out that the worst case instances arise by the sub-case given by (3.6). In particular,
the maximum value for the objective function we obtained was approximately 1.1095
and the optimal values for the four variables are v1 = 1, v2 ≈ 0.526, d̄1 = 1, d̄2 ≈ 0.357.
This concludes the proof of the upper bound on the Price of Anarchy. Furthermore, it
is not hard to convert the variables to the underlying worst case instance, which we
present in the next paragraph.
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Tight Example. Consider an instance of the discriminatory auction for k ≥ 4 units
and n = 2 bidders. Bidder 1 has value v1 = 1 and d1 = k, whereas bidder 2 has a
value v2 = 0.526 and d2 = ⌈0.357k⌉ units. Let B1, B2 be two distributions supported in
[0, d2

k
]. Note that v2 > d2

k
. In accordance to Equation (3.4), the cumulative distribution

functions of B1 and B2 are

F1(z) =
v2 − d2

k

v2 − z
, F2(z) = k − d2

d2

z

1 − z
.

It is easy to verify that B = (B1, B2) is indeed a mixed equilibrium. The optimal
allocation is for bidder 1 to obtain all k units and the expected social welfare of B, by
Lemma 3.4.2, is SW (B) = kSW1(v, d̄), since F1(0) > 0. The worst case inefficiency
ratio occurs as k grows and is approximately 1.1095. □

3.4.2 Multiple Bidders

Inspired by the construction in the previous section, we move to instances with more
than two bidders and provide first a lower bound on the Price of Anarchy. This bound
shows a separation between n = 2 and n > 2, in the sense that equilibria can be more
inefficient with a higher number of bidders. It also improves the best known lower
bound of the discriminatory price auction for the class of submodular valuations, which
was 1.109, by Christodoulou et al. (2016b). The improvement however is rather small.

Theorem 3.4.3. For n > 2, and for the class of mixed strategy Nash equilibria, the
Price of Anarchy is at least 1.1204.

Proof. Consider a discriminatory auction instance of k ≥ 2 units. Let the number of
bidders be n + 1: one additive bidder, denoted by α, that competes against n < k

unit-demand bidders. We assume that ties are in favor of bidder α. The value per
unit of the additive bidder is 1, whereas the value of the i-th unit-demand bidder is
vi, for i = 1, . . . , n. The values of the unit-demand bidders are sorted in increasing
order, i.e. v1 ≤ v2 ≤ · · · ≤ vn and vn ≤ 1. For convenience, we define, for i = 0, . . . , n,
the auxiliary terms hi = i

k−n+i
. Moreover, we will later choose the values so that they

satisfy the following set of inequalities:

1. For i = 1, . . . , n − 1, m = i + 1, . . . , n, and every z ∈ [hm−1, hm]:

m−1∏
j=i+1

vj − hj

vj − hj−1
≥ vi − z

vi − hi

vm − hm−1

vm − z
. (3.9)
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2. For i = 2, . . . , n, m = 1, . . . , i − 1, and every z ∈ [hm−1, hm]:

i−1∏
j=m+1

vj − hj

vj − hj−1
≤ vm − z

vm − hm

vi − hi−1

vi − z
. (3.10)

Let B be a product distribution. The additive bidder α bids according to a
distribution Bα supported in [0, hn] with the cumulative distribution function Fα. Fα is
a branch function with n branches, where for i = 1, . . . , n, the form of Fα at [hi−1, hi],
denoted by F i

α, is

Fα(z) = F i
α(z) =

n∏
j=i+1

Å
vj − hj

vj − hj−1

ã
vi − hi

vi − z
.

The distribution Bi of each unit-demand bidder i = 1, . . . , n, is supported in
[hi−1, hi], and the form of its CDF is

Fi(z) = k − n

1 − z
− (k − n + i − 1)

We now show that this construction is indeed a mixed Nash equilibrium, with the
following lemma.

Lemma 3.4.3. The profile B is an equilibrium, provided the values v1, . . . , vn satisfy
Equations (3.9) and (3.10).

Proof. Firstly, when the additive bidder bids the rightmost point in her support hn = n
k
,

this grants her an allocation of k (since she outbids all the unit-demand bidders) and
an expected utility of k(1 − n

k
) = k − n. Therefore, bidding above hn is a dominated

strategy for bidder α, since she would still win k units but will be asked to pay more
than hn = n

k
. On the other hand for i = 1, . . . , n, bidding z ∈ [hi−1, hi), grants bidder

α an expected utility of

E
b−α∼B−α

[uα(z, b−a)|z ∈ [hi − 1, hi)] = (k − n + i − 1 + Fi(z)) (1 − z) = k − n.

Therefore, by taking the expectation over Bα on both sides of this equation, we obtain
that Eb∼B [uα(b)] = k − n and bidder α has no profitable unilateral deviation.

We now examine the incentives for unilateral deviations of the n unit-demand
bidders. For each one of the unit-demand bidders i = 1, . . . , n, their expected utility
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for bidding in the interval of their support (hi−1, hi) is

E
b−i∼B−i

[ui(z, b−i)|z ∈ (hi−1, hi)] = F i
α(z)(vi − z) =

n∏
j=i+1

Å
vj − hj

vj − hj−1

ã
(vi − hi)

and, by taking an expectation on both sides of the above equation, the expected utility
of unit-demand bidder i is

E
b∼B

[ui(b)] =
n∏

j=i+1

Å
vj − hj

vj − hj−1

ã
(vi − hi) .

Similarly to the additive bidder, no unit-demand bidder is willing to bid higher than
hn, since, even though this strategy will result in outbidding all other bidders and thus
guaranteeing them their unit, it will result in overpaying. Moreover, bidding 0 would
result in losing to the additive bidder α since ties are in favor of the additive bidder.
Finally, no bidder would ever bid vi or above since such a deviation would result in a
non-positive expected utility.

To conclude the proof that this construction is a mixed Nash equilibrium, we need
to examine whether any unit-demand bidder i has an incentive to bid outside her
support without exceeding hn. For i = 1, . . . , n − 1, suppose that the unit-demand
bidder i is unilaterally deviating to a point z ∈ [hm−1, hm] such that z < vi, and
m ∈ {i + 1, . . . , n}. But then, since the value vector is such that Equation (3.9) holds,
we have that

E
b−i∼B−i

[ui(z, b−i)] = F m
α (z)(vi − z) =

n∏
j=m+1

Å
vj − hj

vj − hj−1

ã
vm − hm

vm − z
(vi − z)

≤
n∏

j=i+1

Å
vj − hj

vj − hj−1

ã
(vi − hi) = E

b∼B
[ui(b)] .

Finally, for i = 2, . . . , n, consider the unilateral deviation of bidder i to an interval
[hm−1, hm] for m ∈ {1, . . . , i − 1}. However, due to Equation (3.10) we once again
obtain that

E
b−i∼B−i

[ui(z, b−i)] ≤ E
b∼B

[ui(b)] .

Hence, no unit-demand bidder has a unilateral deviation and B is a mixed Nash
equilibrium.

Note that the welfare maximizing allocation is to assign all units to bidder α.
Therefore the optimal social welfare is k. To obtain the worst case instance, given a
number of units k ≥ 2, and a number of unit-demand bidders n < k, we need to specify
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a value vector v so that the expected social welfare is minimized and Equations (3.9)
and (3.10) hold. By Lemma 3.4.8, we can easily obtain the expression of the expected
social welfare (normalized by k) and, therefore, the optimization problem that yields
the most inefficient auction instance attainable with the above construction given a
number of units k ≥ 2 and a number of unit-demand bidders n < k is

min
v∈(0,1)

1 − (1 − n

k
)

n∑
i=1

n∏
j=i+1

Å
vj − hj(n, k)

vj − hj−1(n, k)

ã∫ hi(n,k)

hi−1(n,k)

vi − hi(n, k)
vi − z

1 − vi

(1 − z)2 dz

subject to hi(n, k) = i

k − n + i
, ∀i ∈ {0, . . . , n}

vi > hi(n, k), ∀i ∈ {0, . . . , n}
m−1∏

j=i+1

vj − hj

vj − hj−1
≥ vi − z

vi − hi

vm − hm−1

vm − z
, ∀i ∈ {1, . . . , n − 1}, m ∈ {i + 1, . . . , n},

z ∈ [hm−1(n, k), hm(n, k)]
i−1∏

j=m+1

vj − hj

vj − hj−1
≤ vm − z

vm − hm

vi − hi−1

vi − z
, ∀i ∈ {2, . . . , n}, m ∈ {1, . . . , i − 1},

z ∈ [hm−1(n, k), hm(n, k)]

(3.11)

We were able to numerically solve a series of optimization problems of the above
format given integers k, n using global optimization routines of the scientific computing
library Scipy of Python. We observed that the worst case instances were those in which
the ratio n

k
≈ 37%. For instance, when k = 10 and n = 4, the above optimization

problem yields 0.8941 and therefore the worst case ratio is 1/0.8941 ≈ 1.1184, which is
already higher than the Price of Anarchy attainable with two bidders that we have
discussed in Section 3.4.1. If we increase the number of units further to, say, k = 100
and set n = 37, the optimization problem yields approximately 0.8925 and therefore
the worst case inefficiency becomes 1/0.8925 ≈ 1.1204. By experimenting with very
large values of k and n, the worst case inefficiency differs only in the 5th decimal digit,
hence we have a convergence to 1.1204, using n

k
≈ 0.3732.

The above bound is the best lower bound we have been able to establish, even after
some extensive experimentation (driven by the results in the remainder of this section).
It is natural to wonder if there is a matching upper bound, which would establish that
the Price of Anarchy remains very small even for a large number of bidders. Recall that
from De Keijzer et al. (2013), we know already a bound of e/(e − 1) ≈ 1.58. Although
we have not managed to settle this question, we will provide an improved upper bound
for a special case, for which there is evidence that it captures worst-case scenarios of
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inefficiency. At the same time, we will be able to characterize the format of such worst
case equilibria.

To obtain some intuition, it is instructive to look at the proofs of our two lower
bounds, in Theorem 3.4.1 and in Theorem 3.4.3. One can notice that the main source
of inefficiency is the fact that the auctioneer accepts multi-unit demand declarations.
When this does not occur, we have already shown in Corollary 3.3.1 that mixed Nash
equilibria attain optimal welfare. When multi-demand bidders are present, Theorem
3.4.1 shows that in the case of two bidders, the most inefficient mixed Nash equilibrium
occurs when a participating bidder declares a demand for all the units, whereas the
opponent requires a much smaller fraction of the supply. In the proof of Theorem 3.4.3
above, we have extended this paradigm for multiple bidders with an arbitrary demand
structure, but under the assumption that one of the bidders requires all the units (the
additive bidder). Such a setting, of one large-demand bidder facing competition by
multiple small-demand bidders has also been discussed in Baisa and Burkett (2018).
Furthermore, there exist other auction formats that also needed such a demand profile
at their worst case instances, see e.g., Birmpas et al. (2019) for the uniform price
auction. To summarize, it seems unlikely that the worst instances involve only bidders
with low demand or small variation on their demands.

Given the above, we will analyze the family of instances where there exists an
additive bidder (with demand equal to k), and where she also has the highest value per
unit. In fact, the latter assumption is needed only for the Price of Anarchy analysis
but not for the characterization of the worst-case demand profile and the equilibrium
strategies. We strongly believe that this class is representative of the most inefficient
mixed Nash equilibria (which is true already for the case of two bidders).

The main result of this section is the following.

Theorem 3.4.4. Consider the class of valuation profiles, where there exists an additive
bidder α with the highest value, and an equilibrium B, such that α ∈ W (B). Then, the
Price of Anarchy is at most 4/3.

The proof of the theorem is by following a series of steps. The existence of the
additive bidder helps in the analysis, because a direct corollary of Theorem 3.3.3
is that the additive bidder is the sole non-empty-handed bidder (everyone else faces
competition for all the units).

Corollary 3.4.1 (by Theorem 3.3.3). Consider a valuation profile (v, d) with an
additive bidder α, that admits an equilibrium B, such that α ∈ W (B). Then, bidder α

is the unique non-empty-handed bidder under B, thus, ∑
i∈W (B)\{α} di ≤ k − 1 .
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To proceed, we ensure that for the instances described by Theorem 3.4.4, it suffices
to analyze the equilibria where bidder α belongs to W (B), i.e., there cannot exist a
more inefficient equilibrium B′ of these instances with α ̸∈ W (B′). This is addressed
by the following lemma.

Lemma 3.4.4. Consider a valuation profile, and suppose that it admits two distinct
inefficient equilibria, B and B′. If i ∈ W (B) is a non-empty-handed bidder in B, then
i ∈ W (B′) .

Proof. Let i ∈ W (B) be a non-empty-handed bidder in B and suppose for contradiction
that i ̸∈ W (B′). We know that ∑

j∈W (B)\{i} dj ≤ k − 1. Since B′ is inefficient, and i

does not belong to W (B′), by Lemma 3.3.6, there must exist a bidder m such that
m ∈ W (B′) \ W (B).

We can now look more closely on the bidding behavior of bidders i and m in B′.
Since i ̸∈ W (B′), by Lemma 3.3.7 we know that i ranks lower than all other winning
bidders with probability one. From this, we claim that Prbm∼B′

m
[bm ≥ vi] > 0. Indeed

if this was not the case, then Prbm∼B′
m

[bm < vi] = 1, and bidder i would have an
incentive to outbid bidder m by bidding a value lower than vi and obtain positive
utility, which is a contradiction. This implies that h(B′

m) ≥ vi. By Observation 3.3.2
on the maximum bid submitted by the players of W (B′), this yields that vm > vi.

To obtain a contradiction, we come back to the equilibrium B. Again by Observation
3.3.2, h(Bi) < vi, and therefore, Prbi∼Bi

[bi < vm] = 1. But this implies that bidder m

has an incentive to outbid bidder i and obtain a positive utility, which completes the
proof.

Using Lemma 3.4.4 and Corollary 3.4.1, from now on, we fix a bidder α and an
inefficient equilibrium B, so that α is additive and α ∈ W (B).

Corollary 3.4.1 already gives us an insight about the competition in such an
equilibrium B. While bidder α will have to compete against the other bidders of W (B)
to win extra units, in addition to those that she is guaranteed to obtain, each bidder in
W (B) \ {α} only competes against α. Each of them is not guaranteed any units, unless
she outbids α (bidder α is the only cause of externality for bidders in W (B) \ {α},
and anyone bidding lower than α cannot get any units). If bidder α did not exist, the
other winners could be automatically granted the demand they are requesting since, in
total, it is smaller than k and hence, there is no competition among them.

Observation 3.4.1. F̂ avg
i (z) = Fα(z), for every i ∈ W (B)\{α}, where Fα is the CDF

of bidder α.
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We continue with further properties on the support of the mixed strategies.

Lemma 3.4.5. For the equilibrium B under consideration, it is true that:

1. Supp(Bα) = [ℓ(BW ), h(BW )].

2. For any two bidders i, j ∈ W (B) \ {α} such that vi ̸= vj, the set Supp(Bi) ∩
Supp(Bj) is of measure 0 (intersection points can occur only at endpoints of
intervals).

Proof. For the first statement, note that it cannot be the case that the set difference
between [ℓ(BW ), h(BW )] and Supp(Bα) is a collection of isolated points, since the
distributions utilize closed intervals. Suppose now that there exists an interval I ̸∈
Supp(Bα), with I ⊆ [ℓ(BW ), h(BW )]. We can choose I to be sufficiently small, so that
there exists a bidder i ∈ W (B) \ {α} such that I ⊆ Supp(Bi). This is feasible, since
by Corollary 3.3.3 the union of the supports of bidders in W (B) \ {α} is an interval.
Assuming I = [ℓ′, h′], where we can also enforce that ℓ′ > ℓ(BW ), we obtain

E
b∼B

[ui(b)] = E
b−i∼B−i

[ui(h′, b−i)] = (vi − h′)diF̂
avg
i (h′) = (vi − h′)diF̂

avg
i (ℓ′)

< E
b−i∼B−i

[ui(ℓ′, b−i)] = E
b∼B

[ui(b)].

The first and last equalities above are due to Corollary 3.3.2 (since ℓ′ > ℓ(BW )), the
second equality holds by Fact 3.3.1, and the third equality follows by Observation 3.4.1
and the fact that Fα(h′) = Fα(ℓ′) (because I ̸∈ Supp(Bα)) and therefore F̂ avg

i (h′) =
F̂ avg

i (ℓ′). The contradiction we get establishes the first statement of the theorem.
To prove the second statement, suppose for contradiction that there exist two

bidders i, j ∈ W (B) \ {α} such that vi ̸= vj and an interval I ⊆ Supp(Bi) ∩ Supp(Bj).
By Theorem 3.3.4, we obtain F̂ avg

i (z) = ui

di(vi−z) and since again by Observation 3.4.1,
F̂ avg

i (z) = Fα(z), we conclude that Fα(z) = ui

di(vi−z) for z ∈ I.
Now for bidder j, and every z ∈ I we obtain

E
b−j∼B−j

[uj(z, b−i)] = djFα(z)(vj − z) = dj
ui

di(vi − z)(vj − z).

The right hand side must be the same for all z ∈ I by Corollary 3.3.2. However, this is
a contradiction since this can only be true for an infinite set of values for z, only when
vi = vj.

Lemma 3.4.5 suggests that we can group the bidders according to their values (since
only bidders with the same value can overlap in their support). Let r ≤ |W (B) \ {α}|
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represent the number of distinct values v1, . . . , vr, that bidders in W (B)\{α} have. We
can partition the bidders of W (B)\{α} into r groups W1(B), . . . , Wr(B), such that, for
j = 1, . . . , r, the bidders in group Wj(B) have value vj . Similarly, we split the support of
the winning bidders [ℓ(BW ), h(BW )] into r intervals, i.e., [ℓ(BW ), h(BW )] = ⋃r

j=1 Ij(B),
where each interval j ∈ {1, . . . , r} is formed as Ij(B) = ⋃

i∈Wj(B) Supp(Bi) . The
following is a direct corollary of Lemma 3.4.5.

Corollary 3.4.2. For every s, t ∈ {1, . . . , r} with s ̸= t, the set Is(B) ∩ It(B) is of
measure 0.

When all bidders in W (B)\{α} have distinct values there are precisely |W (B)\{α}|
intervals, whereas when they all have a common value, they must be bidding on the
entire interval [ℓ(W (B)), h(W (B))] (the equilibrium in the 2-bidder case when d1 = k,
in Section 3.4.1, is one such example). We sometimes denote as I0(B) the interval of
losing bidders [0, ℓ(BW )], i.e., for the bidders in N \ W (B). Note that given B, the
only criterion for the membership of the support of a bidder i in an interval Is(B) is
their value.

The next step is quite crucial in simplifying the extraction of our upper bound. We
show that the worst case demand structure for the bidders in W (B) \ {α} is when they
all have unit demand.

Theorem 3.4.5. For the value profile (v, d) and the equilibrium B under consideration,
there exists another value profile (v′, d′) and a product distribution B′ such that

1. α ∈ W (B′) is an additive bidder and for every bidder i ∈ W (B′) \ {α}, it holds
that d′

i = 1.

2. B′ is a mixed Nash equilibrium for (v′, d′).

3. OP T (v,d)
SW (B) = OP T (v′,d′)

SW (B′) .

Proof. We first construct the value profile (v′, d′) and the product distribution B′.
We then argue that they follow the three properties in the statement of the theorem.
Firstly, we construct the valuation profile (v′, d′) by modifying the profile (v, d) as
follows: we replace every bidder i ∈ W (B) \ {α} with di unit-demand bidders, each of
them having value vi. All other bidders (the additive bidder and the losing bidders)
retain their values and demands.

We construct the product distribution B′ from B as follows. We let bidders α and
N \ W (B) to bid as before. This leaves us only the newly generated unit-demand
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bidders. These bidders use the same CDF, and on the same support, as the bidder
they were derived from. This completes the description of B′.

Now that we have defined B′ the first property follows easily by observing that the
bidders with positive expected utility are precisely all the newly generated unit-demand
bidders as well as bidder α.

To see that B′ is an equilibrium, note that the losing bidders have no incentives to
deviate, just as in B. Since the CDF of bidder α has not changed, the unit-demand
bidders have no incentive to deviate because they face the same competition from
α as the bidders in B. If there was a successful deviation by a unit-demand bidder,
this would directly translate to a deviation in B. The same is true for the additive
bidder since she also sees the same competition on average, and this does not affect
the improvement of her expected utility .

Finally, it is very easy to see that SW (B) = SW (B′), and also that OPT (v, d) =
OPT (v′, d′), which establishes the last statement.

For the remainder of the section, it suffices to analyze valuation profiles, that possess
equilibria where the members of W (B) are either additive or unit-demand. Recall,
that due to Corollary 3.4.1, there must be a unique additive bidder. Hence, we fix an
instance given by a valuation profile (v, d), so that at the equilibrium B, the set W (B)
consists of n unit-demand bidders plus the additive bidder α, i.e., n = |W (B) \ {α}|.
Moreover, due to the following observation we may assume, without loss of generality,
that the support of each unit-demand bidder has no overlapping intervals with other
bidders from W (B) \ {α}.

Lemma 3.4.6. Let (v, d) be a value profile, and let B be any mixed Nash equilibrium,
such that the members of W (B) are all unit-demand bidders aside from one additive
bidder. Then, there exists a mixed Nash equilibrium B′ with disjoint support intervals
such that SW (B) = SW (B′).

Proof. If B is such that no support intervals intersect for unit-demand bidders, we are
done. Otherwise, there exists an interval in which more than one unit-demand bidders
bid. Let S ⊆ WB\{α} be such a set of unit-demand bidders and let Ij = ⋃

i∈S Supp(Bi).
Consider the perspective of bidder α when she bids at Ij ∈ [L, R]. Her average

CDF of winning bids when bidding in Ij is by Theorem 3.3.4

F̂ avg
α (z) = Dj(vα − R)

k(vα − z) .
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Suppose that we partition the interval [L, R] to Dj − Dj−1 disjoint subintervals and
assign each bidder to one of them. For i = 1, . . . , Dj − Dj−1, the CDF of bidder i will
be such that the equation above remains satisfied. This means that

Fi(z) = Dj(va − R)
vα − z

− (k − Dj−1 − (i − 1)),

and for every two pi, pi+1 it must be that

(k − n + Dj−1 + i)(vα − pi) = (k − n + Dj−1 + i + 1)(vα − pi+1)

These points are clearly inside the interval [L, R].
We partition the interval Ij into |S| intervals. Then, we assign a unit demand bidder

in S to bid in a different subinterval with the CDF function Hs. Call this new product
distribution B′. Similarly to Theorem 3.4.5, it is clear that the incentives of the small
bidders remain unchanged since bidder α did not change their distribution. The same
is true for bidder α due to the transformation we defined above. This concludes the
proof.

Therefore, by Corollary 3.4.2 and the discussion preceding it, the support of each
bidder i = 1, . . . , n is [ℓ(Bi), h(Bi)]. Note that due to Lemma 3.4.5, the unit-demand
bidders must cover the entire interval [ℓ(BW ), h(BW )]. Hence, for a unit-demand
bidder i = 1, . . . , n, it must be that ℓ(Bi) = h(Bi−1), assuming for convenience that
h(B0) = ℓ(BW ).

The next theorem provides a more complete understanding of the support intervals
and the distributions of the equilibrium B.

Theorem 3.4.6. For the value profile (v, d) under consideration, the following proper-
ties hold:

1. For bidder α, we have h(Bα) = h(Bn) = h(BW ) = vα − (k − n)vα−ℓ(Bα)
k

.

Moreover, for every unit-demand bidder i = 1, . . . , n − 1 it holds that

ℓ(Bi+1) = h(Bi) = vα − (k − n)(vα − ℓ(Bα))
k − n + i

.

2. The CDF Fα of bidder α, is a branch function, so that for i = 1, . . . , n, Fα(z) =
F i

α(z) for every z ∈ [h(Bi−1), h(Bi)] with

F i
α(z) =

n∏
j=i+1

Å
vj − h(Bj)

vj − h(Bj−1)

ã
vi − h(Bi)

vi − z
.
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Proof. For the first part of the theorem, we can easily obtain the expression for
h(Bα), for the additive bidder α, since she is the sole non-empty-handed bidder, by
applying Lemma 3.3.12. To obtain the expressions for the rightmost points of the
unit-demand bidders, we study the utility function of bidder α focusing on the points
h(B1), h(B2), . . . , h(Bn). In fact, by Corollary 3.3.2 it must be that the expected utility
at all these points is equal. Since these are the rightmost endpoints of the support of
the unit-demand bidders (and none of them is a mass point for any of them), bidder α

is guaranteed i + k − n units when she bids h(Bi). This means that for i = 1, . . . , n − 1,

E
b−α∼B−α

[uα(h(Bi), b−α)] = E
b−α∼B−α

[uα(h(Bi+1), b−α)] ⇔

(k − n + i)(va − h(Bi)) = (k − n + i + 1)(va − h(B(i + 1))) .

The above yields a recursive relation, where h(Bi) can be obtained as a function of
h(Bi+1). Since h(Bn) = h(Ba) is known, we can use induction and establish the desired
equation.

For the second part of the theorem, we use that for i = 1, . . . , n, and z ∈ Supp(Bi) =
[h(Bi−1), h(Bi)], we have

E
b−i∼B−i

[ui(z, b−i)] = E
b−i∼B−i

[ui(h(Bi), b−i)] = Fα(h(Bi))(vi − h(Bi)) ,

where the last equality is by Observation 3.4.1, that F̂ avg
i (z) = Fα(z). By using

Theorem 3.3.4 for F̂ avg
i (z), we have

Fα(z) = Fα(h(Bi))(vi − h(Bi))
vi − z

∀z ∈ Supp(Bi) . (3.12)

To proceed, it is convenient to think of Fα as a branch function, with a different
branch corresponding to each support interval of the unit-demand bidders. In particular,
we let F i

α(z) = Fα(z) for z ∈ Supp(Bi). Moreover, by Lemma 3.3.11 the distribution
Fα must have no mass points in its support at any intermediate point h(Bi) for
i = 1, . . . , n − 1. Therefore, since h(Bi) belongs both to Supp(Bi) and to Supp(Bi+1),
in order to have continuity, it must hold that

F i
α(h(Bi)) = F i+1

α (h(Bi)) ∀i = 1, . . . , n − 1 .
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By combining the last two equalities, Equation (3.12) can be rewritten as

F i
α(z) = F i+1

α (h(Bi))(vi − h(Bi))
vi − z

.

Hence, we have expressed F i
α as dependent on the term F i+1

α (h(Bi)). Finally, since
we know that F n

α (h(Bn)) = 1, we can work inductively and obtain the closed form of
each branch Fαi

, which completes the proof.

Before proving our upper bound, we present two additional lemmas. The first is a
straightforward inequality, that is a direct consequence of the definition of a mixed
equilibrium, and the second is an expression for the social welfare. Both of these are
useful for obtaining our final Price of Anarchy upper bound.

Lemma 3.4.7. Consider a value profile (v, d), and any inefficient mixed Nash equi-
librium B, with W (B) consisting only of additive or unit-demand bidders. Then, for
i = 2, . . . , n, m = 1, . . . , i − 1, and every z ∈ [h(Bm−1), h(Bm)],

i−1∏
j=m+1

vj − h(Bj)
vi − h(Bj−1)

≤ vm − z

vm − h(Bm)
vi − h(Bi−1)

vi − z
. (3.13)

Proof. For bidder i = 1, . . . , n − 1, and m = i + 1, . . . , n consider a unilateral deviation
z ∈ [h(Bm−1), h(Bm)] of bidder i. Then by the definition of a mixed Nash equilibrium,
Definition 3.2.1, it holds that

E
b−i∼B−i

[ui(z, b−i)] ≤ E
b∼B

[ui(b)] ⇔ Fαm(z)(vi − z) ≤ Fαm(h(Bi))(vi − h(Bi)) .

By substituting the appropriate branches of Fα, the first inequality follow. The
reasoning is identical for the second inequality, although this time a bidder i = 2, . . . , n

examines a deviation to a lower interval m = 1, . . . , i − 1.

Lemma 3.4.8. Consider a value profile (v, d), and any inefficient mixed Nash equilib-
rium B, with W (B) consisting only of additive or unit-demand bidders. The expected
social welfare is

kvα − (k − n)(vα − ℓ(Bα))
n∑

i=1

n∏
j=i+1

Å
vj − h(Bj)

vj − h(Bj−1)

ã ∫ h(Bi)

h(Bi−1)

vi − h(Bi)
vi − z

vα − vi

(va − z)2 dz .

Proof. For brevity we denote ℓ(Ba) as ℓ and, for j = 1, . . . , n, we denote h(Bj) as hj.
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We have that

SW (B) = E
bα∼Bα

[
E

b−α∼B−α

[
n∑

i=1
xi(b)vi

]]

= Fα(ℓ)(k − n +
n∑

j=1
vj) +

n∑
i=1

∫ hi

hi−1

fαi(z)

Ñ
Fi(z)(vα − vi) + vα(k − n + i − 1) +

n∑
j=i

vj

é
dz

= Fα(ℓ)(k − n +
n∑

j=1
vj) +

n∑
i=1

∫ hi

hi−1

fαi(z)

Ñ
Fi(z)(vα − vi) + vα(k − n + i − 1) +

n∑
j=i

vj

é
dz

= Fα(ℓ)(k − n +
n∑

j=1
vj) +

n∑
i=1

∫ hi

hi−1

fαi(z)

Ñ
k(vα − hn)(vα − vi)

va − z
+ vi(k − n + i) +

n∑
j=i+1

vj

é
dz

By integrating the integral by parts, rearranging terms and substituting Fαi by its
definition the lemma follows.

Proof of Theorem 3.4.4. For brevity, we denote ℓ(Ba) as ℓ and for j = 1, . . . , n, we
denote h(Bj) as hj. Moreover, by assumption va ≥ vn. To simplify the calculations,
we assume that va = 1 by rescaling all values in the instance.

Given a mixed Nash equilibrium B, we lower bound the expected social welfare
SW (B) described in the equation of Lemma 3.4.8 as

SW (B) = k − (k − n)(1 − ℓ)
n∑

i=1

n∏
j=i+1

Å
vj − hj

vj − hj−1

ã ∫ hi

hi−1

vi − hi

vi − z

1 − vi

(1 − z)2 dz

= k − (k − n)(1 − ℓ)
n∑

i=1

n∏
j=i+1

Å
vj − hj

vj − hj−1

ãÅ∫ hi

hi−1

vi − hi

vi − z

1
(1 − z)dz −

∫ hi

hi−1

vi − hi

(1 − z)2 dz

ã
> k − (k − n)(1 − ℓ)

n∑
i=1

n∏
j=i+1

Å
vj − hj

vj − hj−1

ã ∫ hi

hi−1

vi − hi

vi − z

1
(1 − z)dz

≥ k − (k − n)(1 − ℓ)
∫ hn

ℓ

vn − hn

(vn − z)(1 − z)dz

≥ k − (k − n)(1 − ℓ)
∫ hn

ℓ

1 − hn

(1 − z)2 dz ≥ k − (k − n)(1 − ℓ)

= k − (k − n)(hn − ℓ) = k − (k − n)
(n

k
(1 − ℓ)

)
≥ k − (k − n)n

k
≥ 3

4k .

The first inequality is true since for all bidders i = 1, . . . , n, it holds that vi > hi by
Observation 3.3.2. The second one is an application of the mixed Nash equilibrium
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property encoded by Equation (3.13) of Lemma 3.4.7. The next two inequalities
occur by observing that the respective functions are increasing in terms of vn (which,
by assumption, we upper bound with vn ≤ 1) and ℓ (which we lower bound with
ℓ ≥ 0). The last inequality follows by setting x = n

k
and minimizing the function

s(x) = 1 − x + x2 for x ∈ (0, 1). The theorem follows by observing that the optimal
welfare is k, since the additive bidder has the highest value. □

3.5 A Separation between Mixed and Bayesian
Cases

In this section we explore the more general solution concept of Bayes Nash equilibrium.
We consider the following incomplete information setting. Let (vi, di) be the type of
bidder i ∈ N . We suppose that the private value vi of a bidder i is drawn independently
from a distribution Vi. The second part of bidder i’s type is his demand di; for the
purposes of this section (we only construct a lower bound instance), we assume di to
be deterministic private information.

Each bidder i is aware of her own value per unit vi and the product distribution
formed by the Vj’s, and decides a strategy (bi, qi) ∼ Gi(vi) for each value vi ∼ Vi. The
bidding strategy is in general a mixed strategy. In the special case that bidder i chooses
a single bid (bi(vi), qi) for each drawn value vi, he submits a pure strategy, where qi is
not necessarily di.

Definition 3.5.1. Given V = ×n
i=1Vi and d, a profile G(v) is a Bayes Nash equilibrium

if for all i ∈ N , vi in Vi’s domain, b′
i ≥ 0 and q′

i ∈ Z+ it holds that

E
v−i∼V−i

ï
E

(b,q)∼G(v)
[uvi

i (b, q)]
ò

≥

E
v−i∼V−i

ï
E

(b−i,q−i)∼G−i(v−i)
[uvi

i ((b′
i, q′

i), (b−i, q−i))]
ò

,

where uvi
i (·) stands for bidder i’s utility when his value is vi.

We can define the Bayesian Price of Anarchy in the same way as before, by
comparing against the expected optimal welfare, over the value distributions.

Although in a few other auction formats, the inefficiency does not get worse when
one moves to incomplete information games, we exhibit that this is not the case here.
We present a lower bound on the Bayesian Price of Anarchy of 1.1204, with two bidders.
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For mixed equilibria and two bidders, Theorem 3.4.1 showed that the Price of Anarchy
is at most 1.1095. Although this difference is small, it shows that the Bayesian model
is more expressive and can thus create more inefficiency. In particular, we stress that
the bound obtained here for two bidders is inspired by the same bound of 1.1204 for
mixed equilibria in Theorem 3.4.3, where we had to use a large number of bidders.

Theorem 3.5.1. For n = 2, k ≥ 2, and capped additive valuation profiles, the Price
of Anarchy of Bayes Nash equilibria is at least 1.1204.

Proof. Consider an instance of the discriminatory auction for k ≥ 2 units and n = 2
bidders. Let d ∈ {1, . . . , k − 1} be an integer to be specified later and let h = d

k
< 1.

The type of bidder 1 is (1, k) (i.e., deterministically additive with a value of 1 for each
of the k units). The type of bidder 2 is (v2, d) where v2 is drawn from a continuous
distribution V2. Both bidders reveal their demands. Bidder 1 bids a mixed strategy
according to the distribution B1 supported in [0, h]. We denote the (continuous) CDF
of B1 as F1 and will present its formula in the sequel. Moreover, we denote by f1 its
probability density function.

Given a value v2 drawn from V2, the second bidder bids according to some bidding
function b2(v2) that maps the drawn value v2 to a bid. Therefore, for each value v2,
bidder 2 specifies a pure strategy bid. Nevertheless, due to the randomness of the value
distribution V2, bidder 1 competes against mixed strategies and observes a CDF

F2(x) = x

1 − x

1 − h

h

that describes the distribution of the random variable b2(v2) ∈ [0, h] which we denote
as B2(V2).

Optimality of bidding function b2(·) Consider the utility maximization problem
of bidder 2. For all values v2 drawn from distribution V2, bidder 2 must, at a Bayes
Nash equilibrium, specify a pure bid b2 ∈ [0, h] that maximizes her expected utility, i.e.

max
b2∈[0,h]

E
b1∼B1

[x2(b1, b2)](v2 − b2) ⇔ max
b2∈[0,h]

dF1(b2)(v2 − b2),

and the equivalence is due to the fact that the sole source of competition for bidder 2
is bidder 1. Working backwards and viewing the value of bidder 2 as a function of her
bid (which is the inverse of the bidding function), and taking first order conditions
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with respect to b2, we obtain that

v2(b2) = b2 + F1(b2)
f1(b2)

, b2 ∈ (0, h]. (3.14)

Hence, a utility-maximizing bidding function satisfies Equation (3.14).
We now argue that this auction instance is a Bayes Nash equilibrium. Firstly,

neither bidder has an incentive to bid above h, as bidding h already guarantees them
their entire demand. Moreover, lying about one’s demand is also a weakly dominated
strategy for both bidders.

When bidder 1 declares a bid z ∈ [0, h], her utility is

E
v2∼V2

[u1(z, b2(v2))] = (k − d + dF2(z))(1 − z) = k − d

Therefore, since the expected utility of bidder 1 is k − d and is a constant at every
subinterval of her support, bidder 1 has no incentive to deviate unilaterally.

In the case of bidder 2, we have chosen her bidding function b2(v2) to be one that
satisfies Equation (3.14). Since this bidding function maximizes her utility, it holds
that, given a type v2

E
b1∼B1

[x2(b1, b2(v2)](v2 − b2(v2)) ≥ E
b1∼B1

[x2(b1, b′)](v2 − b′)

for all b′ ∈ [0, h]. Therefore, this instance is a Bayes Nash equilibrium.
The expected social welfare of this BNE is

SW := E
b2∼B2(V2)

ï
E

b1∼B1
[x1(b1, b2) + x2(b1, b2)v2(b2)]

ò
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. We continue as follows:

SW =
∫ h

0
f2(z)

Å
E

b1∼B1
[x1(b1, z) + x2(b1, z)v2(z)]

ã
dz

=
∫ h

0
f2(z)

Å
k − E

b1∼B1
[x2(b1, z)](1 − v2(z))

ã
dz

= k
∫ h

0
f2(z)

Å
1 − hF1(z)

Å
1 − z − F1(z)

f1(z)

ãã
dz

= k(1 − h)
h

∫ h

0

1
(1 − z)2

Å
1 − hF1(z)

Å
1 − z − F1(z)

f1(z)

ãã
dz

= k

Å
1 + (1 − h)

∫ h

0

F1(z)2

(1 − z)2f1(z) − F1(z)
1 − z

dz

ã
(3.15)

(3.16)

The third equality in the above derivation is due to Equation (3.14). In Equation
(3.15) the social welfare of this instance is written in terms of h = d

k
and the functions

F1 and f1.
We have already shown that this instance is in fact a Bayes Nash equilibrium for

any continuous function F1 supported in [0, h]. The question remains which function
F1 (and consequently f1 as its derivative) should we choose.

Let us now focus on the integral in the right hand side Equation (3.15) i.e.,

I :=
∫ h

0

F1(z)2

(1 − z)2f1(z) − F1(z)
1 − z

dz

Ideally, we would want to pick the continuous and increasing function F1 that
minimizes I as long as F1(h) = 1. This is possible, as we are dealing with a well-posed
problem of variational calculus, a field of mathematics with a goal of finding functional
maxima and minima. Using such an approach (solving the Euler-Lagrange equation of
the problem), we were able to determine that the function

F1(x) = W (−e−1(1 − h)2)
W(−e−1(1 − x)2)

is such a functional minimum for Equation (3.15). Here, W(x) for x ≥ −1
e

is the
principal branch (commonly denoted by W0) of the Lambert function, the multi-valued
inverse of wew = x, see the work of Corless et al. (1996) for a complete reference. The
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derivative of W(x) is dW
dx

= W(x)
x(1+W(x)) . By applying this rule, we can obtain that

f1(z) = dF1

dz
= 2F1(z)

(1 − z) (1 + W(−e−1(1 − z)2)) . (3.17)

We observe that F1(z) is indeed a valid CDF.

Fact 3.5.1. For x ∈ [0, h], it holds that:

1. F1(0) ≥ 0

2. F1(x) is increasing in [0, h].

3. F1(h) = 1.

Therefore, by replacing F1 and f1 into Equation (3.15) we obtain

SW

k
= 1 + (1 − h)

∫ h

0

F1(z)2

(1 − z)2f1(z) − F1(z)
1 − z

dz

= 1 + (1 − h)W(−e−1(1 − h)2)
2

∫ h

0

W(−e−1(1 − z)2) − 1
W(−e−1(1 − z)2)(1 − z)dz.

The second equality follows by Equation 3.17. What remains now is to find the global
minimum of the right hand side of the above with respect to h ∈ (0, 1). Indeed, we
can numerically verify that for h ≈ 0.36, we have that SW

k
≈ 0.8925.

Finally we observe that for all z ∈ [0, h] it holds that

v(z) = z + F (z)
f(z) = z + (1 − z)(1 + W(−e−1(1 − z)2)) ≤ 1

and therefore, the optimal social welfare is exactly k, since the optimal allocation is to
always give k units to bidder 1. Thus, for this instance, the ratio of the optimal social
welfare over the expected social welfare for this equilibrium is OP T

SW
≈ 1

0.8925 ≈ 1.1204
and the proof follows.

Remark 3.5.1. When k = 1, there is a lower bound of 1.156 in Jin and Lu (2022) for
the first price auction. However this requires a very large number of bidders. There is
a simpler construction with two bidders in Syrgkanis (2014) but it only yields a lower
bound of 1.06.



Chapter 4

Interval Cover

4.1 Introduction

For the remainder of the dissertation, we shift our attention to procurement auctions.
In this chapter1, we consider a mechanism design problem, that emerges under certain
spatial models for crowdsourcing and labour matching markets. It is instructive to
start with an example, so as to introduce the main aspects of the model. Imagine a
set of cities, located geographically in a consecutive order, and consider a company
that has opened a store in each of these cities. In Figure 4.1, we see an instance with 5
cities, named A to E. The company needs to meet a demand constraint, i.e., a lower
bound on the volume of goods that need to be transported to each store, based on
consumption and future planning. To achieve this goal, it chooses to hire other firms, or
single individuals, that can make deliveries, via a reverse (procurement) auction (for an
exposition on auctions for transportation routes, see Cramton et al. (2006)). Suppose
that every participating entity, referred to as a bidder or a worker, can only cover a
certain interval of contiguous cities, at a cost that she specifies, and furthermore, she
can only accommodate a certain volume of goods, assumed to be the same for each
city in her declared interval (among others, dependent on the transportation means
that she owns). The problem boils down to selecting a set of winning bidders who can
jointly cover all the demand constraints at minimum cost, and in a way that prevents
the workers from misreporting their true preferences.

In the crowdsourcing jargon, we can view the store in each city as a task with a
demand requirement. For instance, in labeling/classification tasks, the demand could
correspond to the number of people who should execute the task in order to acquire

1A conference version with the results of this chapter appeared in SAGT ’22 (Markakis et al.,
2022a).
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A B C D E
Figure 4.1 An example with 5 tasks (A to E) and 5 workers.

a higher confidence on the outcome. In other cases, it could be interpreted as a (not
necessarily integral) volume coverage requirement.

vehicle contribution cost
truck 8 10
van 6 5

pickup 5 4
motorbike 1 2

car 3 4
Table 4.1 Contribution and costs of
the workers of Figure 4.1.

Coming back to the example of Figure 4.1, say
that the demand of cities A to E are given by the
vector (6, 2, 9, 1, 3). The contribution per task, as
well as the cost of the workers are given by Table
4.1. The interval covered by each worker is visible
in Figure 4.1. Obviously, hiring all the workers is
a feasible solution. Selecting the workers with the
van, the pickup and the car also forms a feasible
solution since the demands of all cities are indeed
satisfied. Notice that the optimal solution is to hire

the workers with the truck and the motorbike at a total cost of 12.
From an algorithmic viewpoint, there has been already significant progress on the

problem. As it can be easily seen to be NP-hard, the main results on this front include
constant factor approximation algorithms, with further improvements for special cases.
However, in the context of mechanism design, one needs to consider strategic aspects as
well. Bidders may attempt to report higher costs in order to achieve higher payments,
or they can lie about the subset of tasks they can actually fulfil. It would be therefore
desirable to have mechanisms that, on the one hand, achieve competitive approximation
guarantees, and on the other, deter bidders from misreporting. To our knowledge,
the currently best result on this direction is by Dayama et al. (2015), where however
the approximation ratio of their truthful mechanism is unbounded in terms of the
number of tasks and workers (and depends on numerical parameters of each instance).
It has remained open since then, if truthfulness can be compatible with bounded
approximation guarantees.
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Contribution

We focus on truthful mechanisms and their approximation guarantees against the
optimal cost. To this end, we provide two main results. The first one, in Section 4.3, is
a truthful ∆-approximation mechanism, where ∆ is the maximum number of workers
that are willing to work on the same task (the maximum being taken over all tasks).
This mechanism, improves significantly the state of the art, coming to a guarantee
that is polynomially bounded in terms of the input size. Apart from the improvement,
we note also that our result is based on the local-ratio technique from approximation
algorithms (see Bar-Yehuda et al. (2005) for an extensive reference), a technique that
has not been used very often for building truthful mechanisms (for an exception, see
Elkind et al. (2007)). Moving on, our second result, in Section 4.4, concerns the class
of instances with a constant number of tasks, which generalizes min-knapsack, an
NP-hard variant of knapsack that corresponds to the single-task case of our problem.
For this class we provide a truthful FPTAS, by mainly exploiting and adapting the
framework of Briest et al. (2011). In doing so, we also identify a flaw in a previous
attempt for designing a truthful FPTAS for min-knapsack by Chen et al. (2019).
Finally, in Section 4.5, we discuss some further implications and extensions.

Related Work

As already discussed, the work most related to ours is Dayama et al. (2015), which
introduced the model in the context of crowdsourcing. They provide a truthful optimal
mechanism when the workers have an identical contribution, whereas for the general
case, they present a truthful approximate mechanism, the ratio of which is dependent
on the contribution parameters of the workers. Furthermore, Xu et al. (2015) study
the case of unit-demand tasks and unit-contribution workers and identifies a truthful
optimal mechanism. For the same setting, they also propose a mechanism when workers
can submit multiple bids, for which they attain a logarithmic factor. Additionally, in
Zhang et al. (2015) the authors studied the prominent special case of a single task
(min-knapsack) and provided a randomized, truthful-in-expectation mechanism that
achieves an approximation factor of 2.

Regarding the purely algorithmic problem, without the constraint of truthfulness, it
has appeared under the name of (0-1)resource allocation, and a 4-approximation
was presented in Chakaravarthy et al. (2011). The currently best known algorithm
achieves a factor of 3, in Mondal (2018). For the min-knapsack problem, a PTAS is
implied by Csirik (1991) and a FPTAS is given in Kothari et al. (2005).
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There are quite a few problems that can be viewed as generalizations of what we
study here, such as general scheduling problem (Bansal and Pruhs, 2014), multidimen-
sional min-knapsack (Pritchard, 2010), column restricted covering integer programs
(Chakrabarty et al., 2010). Moreover, several problems in discrete optimization can
be seen as related variants, but are neither extensions nor special cases of ours. In-
dicatively: bandwidth allocation (Chen et al., 2002), multiset multicover(Bredereck
et al., 2020; Rajagopalan and Vazirani, 1993), geometric knapsack (Gálvez et al., 2021),
capacitated network design (Carr et al., 2000), admission control (Phillips et al., 2000).

Finally, for general spatio-temporal models appearing in the crowdsourcing literature,
we refer to two recent surveys by Gummidi et al. (2019) and Tong et al. (2020), which
cover to a big extent the relevant results.

4.2 Preliminaries

In this section, we first define formally the problem that we study, together with some
additional necessary notation. In the sequel, we discuss the relevant definitions for the
design of truthful mechanisms.

Problem Statement

We are interested in the optimization problem defined below. For motivating applica-
tions, we refer the reader to Section 1.2 in Dayama et al. (2015).

Cost Minimization Interval Cover (cmic): Consider a set of tasks, say {1, . . . , m},
that are ordered in a line, and a set of available bidders N = {1, . . . , n}. We will
interchangeably use the term bidder or worker in the sequel. An instance of cmic is
determined by a tuple (b, q, d), where:

• The vector b = (b1, . . . , bn) is the bidding profile. For each bidder j ∈ N ,
bj = (cj, [sj, fj]), where [sj, fj] = Ij is the interval of contiguous tasks {sj, sj +
1, . . . , fj} ⊆ [m], that j is able to contribute to, and cj ∈ R≥0 is the cost incurred
to her, if she is selected to contribute. We can assume positive costs since workers
of zero cost are trivially included in the solution. We often denote b as (c, I)
where c is the cost vector and I is the vector of the intervals.

• The vector q = (q1, . . . , qn) is the contribution vector, so that qj ∈ R>0 denotes
the contribution that bidder j can make to the tasks that belong to [sj, fj].
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• The vector d = (d1, . . . , dm) specifies the demand dj ∈ R>0 of a task j.

The goal is to select a set of bidders S ⊆ N of minimum cost, that satisfies

∑
i∈Nj(I)∩S

qi ≥ dj, ∀ j ∈ [m], (4.1)

where for j ∈ [m], Nj(I) := {i ∈ N | j ∈ [si, fi]}, i.e. is the set of bidders who can
contribute to task j.

The problem belongs to the broad family of problems described by covering integer
programs. It may also seem reminiscent of multicover variants of the set cover
problem on an interval universe. We note however that in cmic, each worker is allowed
to be picked at most once, and moreover, the coverage requirement is not necessarily
integral, which is a substantial difference.

Given a feasible solution S ⊆ N , we refer to its total cost, ∑
i∈S ci, as the derived

social cost. Throughout this chapter, we focus on deterministic allocation algorithms
that use a consistent deterministic tie-breaking rule. Given an instance P = (b, q, d),
and an allocation algorithm A, we denote by WA(b) the set of bidders selected by
A, when q, d are clear from the context2. In the same spirit, we let also C(A, b) :=∑

i∈WA(b) ci be the social cost derived by algorithm A on input P . Finally, we use
OPT (b) to denote the cost of an optimal solution.

Truthful Mechanisms

We move now to the strategic scenario, where bids can be private information. A
mechanism for a reverse auction, like the ones we study here, is a tuple M = (A, π),
consisting of an allocation algorithm A and a payment rule π. Initially, each bidder
j ∈ N is asked to submit a bid bj := (cj, [sj, fj ]), which may differ from her actual cost
and interval. Then, given a bidding profile b = (c, I), the allocation algorithm A(b)
selects the set of winning bidders, i.e., this is a binary setting where the allocation
decision for each bidder is whether she is included in the solution or not. Finally,
the mechanism computes a vector of payments π(b), so that πi(b) is the amount to
be paid to bidder i by the auctioneer. Naturally, we will consider that non-winning
bidders do not receive any payment.

Note that we consider the contribution qj, for j ∈ N , to be public information,
available to the auctioneer. The reason is that such a parameter could be estimated

2It is convenient to highlight the dependence on b, especially when arguing about truthful
mechanisms in the remaining sections.
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by past statistical information on the performance or capacity of the worker. As an
example, we refer to Dayama et al. (2015), where for labeling tasks, it is explained
how qj can be computed as a function of a worker’s quality (i.e., the probability for
a worker to label correctly), that can be available in a crowdsourcing platform with
rating scores or reviews for the workers.

Our setting corresponds to what is usually referred to as a pseudo-2-parameter
environment (or almost-single-parameter as referred to by Blumrosen and Nisan (2007)),
since each bidder has two types of private information, the monetary cost and the
interval. And in particular, our model can be seen as a special case of single-minded
bidders, who are interested in a single subset each, but for reverse auctions. As in the
paper of Dayama et al. (2015), when the true type of a worker i is (ci, [si, ti]), and she
declares her true interval or any non-empty subset of it, then she enjoys a utility of
πi − ci, if she is selected as a winner by the mechanism (with πi being her payment).
If she declares any other interval that contains any task j /∈ [si, ti], and she is selected
as a winner, then the bidder has a utility of −∞, or equivalently has an infinite cost.
This simply models the fact that the worker may not be capable of executing or does
not desire to be assigned to any task outside her true interval (and therefore would
have no incentive for such deviations).

The previous discussion allows us to exploit the sufficient conditions proposed by
Lehmann et al. (2002) (for forward auctions), to obtain truthful mechanisms, as an
extension of the seminal result by Myerson (1981), which has been stated in Chapter 2
as Lemma 2.2.1. For reverse auctions, the same framework is also applicable, implying
that as long as an allocation algorithm is exact (each selected bidder is assigned her
declared interval), the crucial property we need to enforce is monotonicity. Monotonicity
of an algorithm means that if a winning bidder declares a more competitive bid, she
should still remain a winner. To be more precise, we define first the following partial
order on possible bids.

Definition 4.2.1. Let bi = (ci, [si, fi]) and b′
i = (c′

i, [s′
i, f ′

i ]) be two bids of bidder i ∈ N .
We say that b′

i ⪰ bi, if ci ≥ c′
i and [si, fi] ⊆ [s′

i, f ′
i ].

Definition 4.2.2. An allocation algorithm A is monotone if for every bidding profile
b, for any bidder i ∈ WA(b) and any bid b′

i ⪰ bi, it holds that i ∈ WA(b′
i, b−i).

Theorem 4.2.1 (cf. Lehmann et al. (2002), Theorem 9.6). In settings with single-
minded bidders, given a monotone and exact algorithm A, there exists an efficiently
computable payment rule π, such that M = (A, π) is a truthful mechanism.
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Finally, we stress that all our proposed algorithms are exact by construction, which
means that bidders will only be assigned to the set of tasks which they asked for, as in
Briest et al. (2011), and hence we only need to care about monotonicity.

4.3 An Improved Truthful Mechanism

As already stated in Section 4.1, the currently best algorithm for cmic has an ap-
proximation ratio of 3 due to Mondal (2018), based on refining the 4-approximation
algorithm by Chakaravarthy et al. (2011). However, as the next proposition shows,
these algorithms are not monotone3. More generally, it has been noted by Dayama
et al. (2015) that primal-dual algorithms with a “delete phase” at the end, are typically
non-monotone, without, however, providing an example. For the sake of completeness,
we provide a concrete example, in Section B.1 of the Appendix B, that proves the
following statement:

Proposition 4.3.1. The current state of the art constant factor approximation algo-
rithms for cmic by Chakaravarthy et al. (2011); Mondal (2018) are not monotone.

So far, the only truthful mechanism that has been identified by Dayama et al. (2015),
achieves an approximation ratio of 2 ·maxi∈N {qi}. Note that this approximation ratio is
dependent on the contribution parameters of the workers, which can become arbitrarily
large, and not bounded by any function of n and m. The main result of this section is
the following theorem, established via a greedy, local-ratio algorithm, which reduces the
gap between truthful and non-truthful mechanisms. In particular, this gap is related
to the maximum number of workers that contribute to any given task, which for an
instance ((c, I), q, d) of cmic, is ∆(I) := maxj=1,...,m |Nj(I)|. We denote it simply by
∆ when I is clear from context. Obviously, ∆ is always upper bounded by the number
of workers, n.

Theorem 4.3.1. There exists a truthful, polynomial-time mechanism, that achieves a
∆-approximation for the cmic problem.

The rest of the section is devoted to the proof of Theorem 4.3.1. The main
component of the proof is an approximation-preserving reduction to a particular job
scheduling problem for a single machine (Bar-Noy et al., 2001), defined as follows:

3For a similar reason, the 40-approximation for cmic by Chakrabarty et al. (2010), which uses as
a subroutine a primal-dual algorithm involving a “delete phase”, is non-monotone as well.
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Loss Minimization Interval Scheduling (lmis): We are given a limited resource
whose amount may vary over a time period, which WLOG, is defined by the integral
time instants {1, . . . , m}. We are also given a set of activities J = {1, . . . , n}, each
of which requires the utilization of the resource, for an interval of time instants. An
instance of lmis is determined by a tuple (p, T, r, D), where:

• The vector p = (p1, . . . , pn) specifies a penalty pj ∈ R>0, for each activity j ∈ J ,
reflecting the cost that is incurred by not scheduling the activity.

• For each activity j ∈ J , we are given an interval4 Tj = [sj, fj ], such that sj, fj ∈
{1, . . . , m} are the start and finish times of j respectively. Let T = (T1, . . . , Tn),
be the vector of all activity intervals.

• The vector r contains, for each activity j ∈ J , the width rj ∈ R>0, reflecting
how much resource the activity requires, i.e., this means that activity j requires
rj units of resource at every integral time instant of its interval Tj.

• The vector D = (D1, . . . , Dm) specifies the amount of available resource Di ∈ R>0,

at each integral time instant i ∈ [m].

Let Ji(T) := {j ∈ J | i ∈ Tj}. The goal in lmis is to select a set of activities S ⊆ J
to schedule, that meet the resource constraint

∑
j∈S∩Ji(T)

rj ≤ Di, i = 1, . . . , m, (4.2)

and such that ∑
j∈J \S pj is minimized, i.e., we want to minimize the sum of the penalties

for the non-scheduled activities.
Our work highlights an interesting connection between lmis and cmic. This can

be seen via the reduction provided by algorithm Â below, where for an instance
((c, I), q, d), we let Q(I) = (Q1(I), . . . , Qm(I)) and Qj(I) := ∑

i∈Nj(I) qi, ∀j ∈ [m].

Algorithm 4.1: Â(b)
▷ Input: A bidding profile b = (c, I) of a cmic instance ((c, I), q, d)

1 Construct the lmis instance (p, T, r, D) = (c, I, q, Q(I) − d), with J = N .
2 Run an approximation algorithm for the lmis instance, and let S be the set of

scheduled activities.
3 return N \ S

4Originally, the problem was defined using a semi-closed interval for each activity, but it is easy to
see that defining it using a closed one instead, is equivalent and more convenient for our purposes.
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Theorem 4.3.2. Algorithm Â converts any α-approximation algorithm for lmis to an
α-approximation algorithm for cmic.

Theorem 4.3.2 is based on the lemma below, which shows the connection between
the feasible solutions of the two problems.

Lemma 4.3.1. Consider a cmic instance P = ((c, I), q, d). Let also P ′ be the lmis
instance defined by (p, T, r, D) = (c, I, q, Q(I) − d), with J = N . Then, for every
feasible solution S of P , it holds that J \ S is a feasible solution for P ′ with the same
cost, and vice versa.

Proof. Observe first that for ℓ = 1, . . . , m, the set Jℓ(I) in P ′ coincides with Nℓ(I) in
P . For the first direction, fix a feasible schedule S for P ′. For every ℓ = 1, . . . , m, using
Equation (4.2) we obtain

∑
j∈S∩Nℓ(I)

qj ≤ Qℓ(I) − dℓ =
∑

j∈Nℓ(I)
qj − dℓ,

where the equality follows from the definition of Q. By rearranging terms, we have
that ∑

j∈Nℓ(I)\S qj ≥ dℓ, which is exactly the feasibility constraint of Equation (4.1),
when we take N \ S as the cmic solution, since Nℓ(I) \ S = Nℓ(I) ∩ (N \ S). Note
also that the cost of the solution S in P ′ is ∑

i∈N \S ci, which is the same as the cost of
the solution (N \ S) for P .

For the reverse direction, fix a feasible solution W of P . For all ℓ = 1, . . . , m, using
Equation (4.1), we obtain

dℓ ≤
∑

j∈W ∩Nℓ(I)
qj =

∑
j∈Nℓ(I)

qj −
∑

j∈Nℓ(I)∩(N \W )
qj,

and by rearranging terms and using the fact that Nℓ(I) = Jℓ(I), we obtain

∑
j∈Jℓ(I)∩(N \W )

qj ≤ Qℓ(I) − dℓ,

which completes the proof, since N \ W satisfies the feasibility constraint of Equation
(4.2) for P ′. Again, the costs of the two solutions coincide.

Proof of Theorem 4.3.2. Lemma 4.3.1 already suggests how to derive an algorithm
for cmic, using as a black box, an algorithm for lmis. Suppose we run Algorithm
Â on a cmic instance P = ((c, I), q, d). Let P ′ be the lmis instance defined by
(c, I, q, Q(I) − d) and suppose we run an α-approximation algorithm for P ′. Note first
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of all that by Lemma 4.3.1, the solution returned is feasible for cmic. We will also
prove that Algorithm Â achieves an α-approximation for P .

To see this, let S be the solution returned by the algorithm for lmis. Let
also OPTLMIS(P ′) be the cost of an optimal solution in P ′. Since, we have used
an α-approximation algorithm for lmis, it returned a solution of cost ∑

i∈N \S ci ≤
αOPTLMIS(P ′). By the definition of Â, the solution returned for P is N \S, and hence
the cost of our solution for cmic equals ∑

i∈N \S ci. It remains now to observe that as a
consequence of Lemma 4.3.1, it follows that OPT (P ) = OPTLMIS(P ′), where OPT (P )
is the cost of an optimal solution for P . □

Approximation Guarantee and Monotonicity of Â

If we only cared about the approximation ratio of Â, it would suffice to use as a black
box any algorithm for lmis. And in fact, the best known algorithm for lmis achieves
a 4-approximation, and was obtained by Bar-Noy et al. (2001), using the local-ratio
framework. Plugging in this algorithm however, does not ensure that we will end
up with a truthful mechanism for cmic. Instead, we will consider an appropriate
modification of the algorithm by Bar-Noy et al. (2001), which enforces monotonicity of
Â, but at the price of a higher approximation ratio. This is presented as Algorithm 4.2
below.

We introduce first a notion that will be useful both for the statement of Algorithm
4.2 and for our analysis. Consider an instance (p, T, r, D) of lmis. Given a set of jobs
S ⊆ J , and a time instant i = 1, . . . , m, we define

Ri(S, T, D) :=
∑

ℓ∈S∩Ji(T)
rℓ − Di.

The quantity Ri(S, T, D) measures how much (if at all), the resource constraint of
Equation (4.2), for the i-th time instant is violated when scheduling all the activities
in S. Accordingly, define R∗(S, T, D) := maxi=1,...,m Ri(S, T, D). Note that a schedule
S is feasible if and only if R∗(S, T, D) ≤ 0.

Algorithm 4.2 constructs a feasible schedule S as follows: Initially, it checks if the
entire set of activities S = J constitutes a feasible schedule. If not, the algorithm
iteratively removes one activity per iteration from S, in a greedy fashion, until S

becomes feasible. The algorithm determines the time instant t∗ with the most violated
feasibility constraint, by computing R∗(S, T, D), and considers all activities from
S whose interval contains t∗. Then, it removes from S one of these activities that
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minimizes a certain ratio, dependent on the current penalties and resource requirements,
while it simultaneously decreases the penalty of all other activities that contain t∗.

Algorithm 4.2 LMIS-LR(p, T, r, D)
▷ Input: An instance (p, T, r, D) of lmis

1 Initialize S = J , k = 0, and pk = (pi,k)i∈[n] = p.

2 while R∗(S, T, D) > 0 do
3 Let t∗ ∈ [m] be a maximizer of R∗(S, T, D).
4 Sk = S ∩ Jt∗(T)
5 εk = min

i∈Sk

pi,k

min{R∗(S, T, D), ri}
6 For i = 1, . . . , m let

pi,k+1 =

pi,k − εk min{R∗(S, T, D), ri}, if i ∈ Sk,

pi,k, o/w.
7 Let j∗ ∈ Sk be a minimizer of εk.
8 Set S = S \ {j∗}, and k = k + 1.

9 return S

Remark 4.3.1. A variation of Algorithm 4.2 for lmis is stated in Bar-Noy et al.
(2001). The main difference is that the algorithm of Bar-Noy et al. (2001) has an
additional step to ensure that the solution returned is maximal. The extra step helps in
improving the approximation ratio, but it destroys the hope for monotonicity of Â. This
can be demonstrated using the same example that we used for the primal-dual algorithms
of Proposition 4.3.1. Furthermore, we note that the algorithm of Bar-Noy et al. (2001)
is presented using the local-ratio jargon. We have chosen to present Algorithm 4.2
here in a self-contained way for ease of exposition but for its analysis (Section B.2 of
Appendix B), we do make use of the local-ratio framework.

Theorem 4.3.3. Algorithm 4.2 achieves a ∆-approximation for the lmis problem,
where ∆ = maxj=1,...,m |Nj(I)|, and the analysis of its approximation is tight.

It remains to be shown that Â, with Algorithm 4.2 as a subroutine, becomes a
monotone allocation algorithm for cmic. For establishing the monotonicity, according
to Definition 4.2.2, we have to examine the ways in which a winning worker i can
deviate from the truth with a bid b′

i ⪰ bi, where bi is her initial bid. By Definition 4.2.1,
this means that under b′

i, a lower or equal cost and a larger or the same interval are
declared, compared to bi. But to argue about Â, we first have to understand how such
deviations from the truth affect the outcome of Algorithm 4.2, when it is called by Â.
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Lowering the cost at a cmic instance corresponds to lowering the penalty of an activity
at the lmis instance that Â constructs. The lemma below examines precisely what
happens when we lower the penalty of a non-scheduled activity in a lmis instance.

Lemma 4.3.2. For an instance (p, T, r, D) of lmis, let S be the schedule returned by
Algorithm 2, and j ∈ J \ S. Then, for any p′

j ≤ pj, it holds that j ∈ J \ S ′, where S ′

is the schedule returned by Algorithm 2 for ((p′
j, p−j), T, r, D).

Proof. Let k∗ be the iteration of Algorithm 4.2, in which activity j was removed from
the solution set, when run on (p, T, r, D). If the unilateral change of pj to a p′

j < pj

causes activity j to be removed at an iteration k < k∗ by being the chosen minimizer
of εk, then the lemma follows.

When this is not the case, we claim that the only alternative is for activity j to
be removed, once again, at iteration k∗. To see this, we will show that all previous
iterations run exactly as in the original instance, if j is not removed in one of them. Let
pnew

i,k be the value of pi,k when Algorithm 4.2 is run on the new instance. The crucial
observation here (enforcing that there will be at least k∗ iterations) is that the quantity
Rℓ(S, T, D) is independent of p for every ℓ. Hence R∗(S, T, D) remains unaffected by
the change of pj to p′

j (nothing else changes in the new instance). This in turn implies
that as long as Algorithm 4.2 uses a deterministic tie-breaking rule, the maximizer of
R∗(S, T, D) remains the same, and so does the set Sk at each iteration k. Since we
assumed that activity j was not removed at iterations k = 1, . . . , k∗ − 1, the minimizers
of each εk are exactly the same as before, and different from j. Putting everything
together, all iterations before k∗ will run in exactly the same manner as before, and
when we reach iteration k∗, for all activities ℓ ̸= j, we have that pnew

ℓ,k∗ = pℓ,k∗ , whereas
for j we have that pnew

j,k∗ ≤ pj,k∗ (since we started with a lower value for pj). Hence,

pnew
j,k∗

min{R∗(S, T, D), rj}
≤ pj,k∗

min{R∗(S, T, D), rj}
.

This implies that the activity j is still a minimizer of εk∗ at iteration k∗ and j will
once again be left out from the schedule at this iteration.

The next lemma examines enlarging the interval of an activity. This needs a
different argument from the previous lemma because the deviation causes an activity
to participate in more time instants.

Lemma 4.3.3. For an instance (p, T, r, D) of lmis, let S be a schedule returned
by Algorithm 2 and j ∈ J \ S. For any interval T ′

j ⊇ Tj, consider the instance
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P ′ = (p, (T ′
j , T−j), r, D′), where D′ = (D′

1, . . . , D′
m) such that:

D′
ℓ =

Dℓ + rj, if ℓ ∈ T ′
j \ Tj,

Dℓ, o/w.

Then, j ∈ J \ S ′, where S ′ is the schedule returned by Algorithm 2 for P ′.

Proof. Let k∗ be the iteration of the algorithm in which activity j was removed when
run on the (p, T, r, D) instance. If the simultaneous change of Tj to a superset T ′

j and
of D to D′, as defined in the statement of the lemma, causes activity j to be removed
at an iteration k < k∗ by being the chosen minimizer of εk, then the lemma follows.

When this is not the case, we claim that the only alternative is for activity j to be
removed again at iteration k∗. Let pnew

i,k be the value of pi,k when Algorithm 4.2 is run
on the new instance. The crucial observation is that as long as j is not removed, the
quantity Rℓ(S, T, D) will remain the same as in the original instance for every ℓ ∈ [m].
This enforces that the condition of the while loop will not be violated before iteration
k∗.

Claim 1. For all S ⊆ J such that j ∈ S, and for every ℓ ∈ [m], it holds that
Rℓ(S, T, D) = Rℓ(S, (T ′

j , T−j), D′).

Proof. Fix a time instant ℓ ∈ [m]. We distinguish the cases:
Case 1: ℓ ∈ T ′

j \ Tj. We have that,

Rℓ(S, T, D) =
∑

i∈S∩Jℓ(T)
ri − Dℓ

=
∑

i∈S∩Jℓ(T)
ri + rj − (Dℓ + rj)

=
∑

i∈S∩Jℓ(T ′
j ,T−j)

ri − D′
ℓ

= Rℓ(S, (T ′
j , T−j), D′).

The third equality follows by the facts that, for ℓ ∈ T ′
j \ Tj , it holds that D′

ℓ = Dℓ + rj

and also that j ∈ S and {j} = Jℓ(T ′
j , T−j) \ Jℓ(T).
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Case 2: ℓ ̸∈ T ′
j \ Tj. We have that,

Rℓ(S, T, D) =
∑

i∈S∩Jℓ(T)
ri − Dℓ

=
∑

i∈S∩Jℓ(T ′
j ,T−j)

ri − D′
ℓ

= Rℓ(S, (T ′
j , T−j), D′).

The second equality follows by the facts that, for ℓ ̸∈ T ′
j \ Tj, it holds that D′

ℓ = Dℓ

and also that Jℓ(T ′
j , T−j) = Jℓ(T).

By using Claim 1 for iterations k = 1, . . . , k∗ − 1 (we can do that since j has not
been removed by the algorithm yet, therefore j ∈ S in all these iterations), we notice
that the time instants that maximize R∗ in each iteration are exactly the same as
before. Furthermore, since the interval of activity j now includes more time instants,
there may be more iterations where j is in the set Sk, compared to the original instance
(this happens when the time instant maximizing R∗ at iteration k is in T ′

j \ Tj). But
this could only cause pnew

j,k to further decrease, and therefore we will eventually have
that pnew

j,k∗ ≤ pj,k∗ or (using Claim 1) that

pnew
j,k∗

min{R∗(S, (T ′
j , T−j), D), rj}

≤ pj,k∗

min{R∗(S, T, D), rj}
.

This implies that activity j is once again the minimizer of εk∗ , as in the original
instance, and the proof is complete.

Combining Lemma 4.3.2 and Lemma 4.3.3 we get the following:

Theorem 4.3.4. Algorithm Â is monotone, when using Algorithm 4.2 as a black box
for solving lmis.

Proof. Fix a bidding profile b and a winning worker i ∈ WÂ(b). Let bi = (ci, [si, fi]),
and consider an arbitrary deviation of i, say b′′

i = (c′
i, [s′

i, f ′
i ]), such that b′′

i ⪰ bi. We
need to show that i ∈ WÂ(b′′

i , b−i) and we will do this in two steps. First, we consider
the deviation b′

i = (c′
i, [si, fi]). Since b′

i differs from bi only with respect to the declared
cost and the bids of the remaining workers remain the same, we can directly use Lemma
4.3.2 to conclude that i ∈ WÂ(b′

i, b−i). Having established that i is still a winner
under (b′

i, b−i), consider now the deviation from b′
i to b′′

i . Note that (b′′
i , b−i) differs

from (b′
i, b−i) only with respect to the declared interval of bidder i. Recall also that

Algorithm Â calls Algorithm 4.2 with input the tuple (c, I, q, Q(I) − d). This means
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that under b′′
i , the vector Q(I) − d in the constructed lmis instance changes only for

time instants that belong to [s′
i, f ′

i ] \ [si, fi] (where we simply add qi). But then, this
can be handled by Lemma 4.3.3, and obtain that i ∈ WÂ(b′′

i , b−i).

To conclude, it is trivial that Algorithm Â runs in polynomial time, when using
Algorithm 4.2 for solving lmis, and hence, the monotonicity of Â, together with
Theorems 4.3.2 and 4.3.3 complete the proof of Theorem 4.3.1.

4.4 A Truthful FPTAS for a Small Number of Tasks

At what follows, we investigate whether we can have truthful mechanisms with a
better approximation ratio for special cases of restricted problem size. An instance of
cmic with a constant number of workers can be optimally solved in polynomial time
by a brute force algorithm, which, together with the VCG payment scheme, results
in a truthful mechanism. On the other hand, the story is different when we have a
small number of tasks, since cmic is NP-hard even for one task (Dayama et al., 2015).
Building upon this negative result, we provide a truthful mechanism that achieves the
best possible approximation factor, for the case of a constant number of tasks, and our
main result of this section is the following:

Theorem 4.4.1. There exists a truthful FPTAS for cmic, when the number of tasks
is constant.

We would like first to pay attention to the special case of a single task, which
corresponds to the min-knapsack problem, the minimization version of knapsack
where items have costs (instead of values) and there is a covering requirement (instead
of a capacity constraint) for the selected items. The work of Briest et al. (2011), which
proposes a truthful FPTAS for the classic maximization version of knapsack, claims
(without providing a proof) that the analogous result holds for min-knapsack too. To
our knowledge, the only published work that explicitly attempts to extend the work
of Briest et al. (2011) and describe a truthful FPTAS for min-knapsack is by Chen
et al. (2019). However, we found that the analysis of truthfulness there is flawed and
we refer to Section B.3 of Appendix B for a counterexample.

Proposition 4.4.1. The FPTAS for min-knapsack, proposed by Chen et al. (2019),
is not monotone.

Therefore, our Theorem 4.4.1 helps to resolve any potential ambiguities for min-
knapsack. Finally, for two or more tasks, we are not aware of any truthful mechanism
attaining any bound better than the one provided by Theorem 4.3.1.
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Remark 4.4.1. As in other approaches for constructing a truthful FPTAS, e.g. Briest
et al. (2011), we also make the assumption from here onwards, that ci ≥ 1 for every
worker i, i.e., the workers will not be allowed to declare a cost lower than 1. At Section
B.4 of Appendix B, we prove that we can adjust the assumption to ci ≥ δ for any
arbitrarily small δ, but for convenience, here we stick to δ = 1.

Furthermore, we bring in some additional notation that we use in this section.
Given a bidding profile b, let csum(b) := ∑

i∈N ci. Similarly let cmin(b) (resp. cmax(b)),
be the minimum (resp. maximum) cost by the bidders.

4.4.1 A Pseudopolynomial Dynamic Programming Algorithm

The first step towards designing the FPTAS, is a pseudopolynomial dynamic program-
ming algorithm that returns the optimal solution for the case of a constant number
of tasks. For simplicity, we focus on describing the algorithm for the case of two
tasks. The generalization is rather obvious (and discussed briefly at the end of this
subsection).

Given an instance with two tasks, let d1, d2 be the demand requirements of the
tasks. Note that N can be partitioned into three sets, W0, W1, W2, since we can have
at most three types of workers: W0 is the set of workers who can contribute to both
tasks, and for ℓ ∈ {1, 2}, Wℓ is the set of workers who are capable of contributing only
to task ℓ.

We define a 3-dimensional matrix Q[ℓ, i, c], where for ℓ = 0, 1, 2, for i = 0, 1, . . . n,
and for c = 0, 1, . . . , csum(b), Q[ℓ, i, c] denotes the maximum possible contribution that
can be jointly achieved by any set of workers in Wℓ ∩ {1, . . . , i} with a total cost of
exactly c. For our purposes, we assume5 that for i ∈ [n], each ci is an integer, so that
c also takes only integral values. Our algorithm is based on computing the values of
the cells of Q and we claim that this can be done by exploiting the following recursive
relation:

Q[ℓ, i, c] =


0, if i = 0
Q[ℓ, i − 1, c], if i > 0 and either i /∈ Wℓ or ci > c

max{Q[ℓ, i − 1, c], Q[ℓ, i − 1, c − ci] + qi]}, o/w

(4.3)

Observe that for a feasible solution S, the workers who contribute to the demand of
task 1 (resp. 2) are those from S ∩W0 and S ∩W1 (resp. S ∩W0 and S ∩W2). Hence, for

5It becomes clear in the next subsection, that the dynamic programming procedure is only needed
for integral cost values.
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ℓ ∈ {1, 2}, it should hold that ∑
j∈S∩W0 qj + ∑

j∈S∩Wℓ
qj ≥ dℓ. Our algorithm then can

work as follows: After computing the values of Q, according to Equation (4.3), return
the set of workers that minimize c(0) + c(1) + c(2), subject to Q[0, n, c(0)] + Q[ℓ, n, c(ℓ)] ≥
dℓ, for ℓ ∈ {1, 2}. This can be done by enumerating all possible options, for breaking
down the final cost as a sum of 3 values, c(0), c(1) and c(2). The formal statement can
be found below.

Algorithm 4.3: DP(b) (presented for two tasks)
▷ Input: A bidding profile b = (c, I) of a cmic instance (b, q, d) with m = 2

1 for ℓ ∈ {0, 1, 2} do
2 for i ∈ {0, 1, . . . , n} do
3 for c ∈ {0, 1, . . . , csum(b)} do
4 Compute Q[ℓ, i, c] using Equation (4.3)

5 return the set of workers that minimize c(0) + c(1) + c(2), s.t.
Q[0, n, c(0)] + Q[ℓ, n, c(ℓ)] ≥ dℓ, ∀ℓ ∈ {1, 2} (or +∞, if (b, q, d) has no solution)

The optimality of the DP algorithm is straightforward from the preceding discussion.
Furthermore, its running time is pseudopolynomial, since the size of the table Q is
3 · (|N | + 1) · (csum(b) + 1) and to find the optimal solution we need to check at most(

csum(b)
3
)

different combinations for the decomposition of the total cost in three terms,
as described earlier. It is easy to extend these ideas, for more tasks given the interval
structure of the problem, i.e., the first dimension of Q will have a range of O(m2) and
the enumeration part of the algorithm will require an order of

(
csum

m2

)
steps. Finally, we

note that since this is an optimal mechanism and we use a deterministic, consistent
tie-breaking rule, it will trivially be monotone.

Henceforth, we will be referring to this pseudopolynomial dynamic programming
algorithm for any constant number of tasks, as the DP algorithm.

Theorem 4.4.2. Given an instance of cmic on a profile b, with a constant num-
ber of tasks and integer costs, Algorithm DP(b) is optimal, monotone, and runs in
pseudopolynomial time, i.e. polynomial in the input size and in csum.

4.4.2 The FPTAS

In order to convert the DP algorithm to a truthful FPTAS, we adapt the framework of
Briest et al. (2011). To that end, we define, for every integer k, an algorithm Ak(b, ϵ),



98 Interval Cover

that uses the DP algorithm as a subroutine, on a subset of the initial set of bidders,
with rounded costs, as follows:

Algorithm 4.4: Ak(b, ϵ)
▷ Input: A bidding profile b = (c, I) of a cmic instance (b, q, d), ϵ ∈ (0, 1)
Let Lk(c) = {i ∈ N : ci ≤ 2k+1}

1 ak = n
ϵ2k .

2 for i ∈ Lk(c) do
3 c̄i = ⌈ak · ci⌉
4 b̄ = (c̄i, [si, fi])i∈Lk(c)

5 return DP(b̄)

Lemma 4.4.1. Let 0 < ϵ < 1. For a bidding profile b and k ≥ 0, the algorithm Ak(b, ϵ)
runs in time polynomial in the input size and in 1

ϵ
, and if 2k ≤ OPT(b) < 2k+1, it

computes a solution of cost at most (1 + ϵ)OPT(b).

Proof. Starting with the time complexity of Ak(b, ϵ), in order to prove that it terminates
after a polynomial amount of time, we need to examine the running time of DP (b̄),
since all other steps are clearly polynomial. Each component of the cost vector that
is given as input to the algorithm DP(b̄) is bounded by 2k+1n

ϵ2k + 1, by the definitions
of the set Lk(c) and ak and hence csum(b̄) is polynomial in n and 1

ϵ
. Since all other

parameters of the instance remain the same, we conclude that DP(b̄) is polynomial
in the original input size of the algorithm Ak(b, ϵ) and in 1/ϵ. Hence, Ak(b, ϵ) is also
polynomial in the input size and in 1

ϵ
.

For every worker i ∈ Lk(c), let c′
i = c̄i

ak
. For brevity, let W∗ be the optimal set of

workers w.r.t. the bidding vector b. We have the following implications:

∑
i∈W∗

c′
i − OPT(b) =

∑
i∈W∗

c′
i −

∑
i∈W∗

ci ≤

∑
i∈W∗

(akci + 1
ak

− ci

)
=

∑
i∈W∗

1
ak

≤ |W∗|
ak

≤

n

ak

= ϵ2k ≤ ϵOPT(b)

Now let Wk be the set of selected workers by the Algorithm Ak(b, ϵ), so that the cost
of the returned solution is SOL = ∑

i∈Wk
ci. Since for every worker i, we have that

ci = ciak

ak
≤ ⌈ciak⌉

ak
= c̄i

ak
= c′

i, it holds that
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SOL ≤
∑

i∈Wk

c′
i = 1

ak

∑
i∈Wk

c̄i ≤ 1
ak

∑
i∈W∗

c̄i =
∑

i∈Wk

c′
i.

The rightmost inequality in the above implications holds because of the following
claim together with the fact that, due to the optimality of the dynamic programming
procedure, the set Wk is optimal w.r.t. to the bidding vector b̄.

Claim 2. The set W∗ is a feasible solution for the instance with the scaled bidding
vector b̄ of |Lk(c)| bidders, produced in Algorithm Ak(b, ϵ), i.e., the constraints of
Equation (4.1) are satisfied by W∗, and W∗ ⊆ Lk(c).

Proof. We recall that feasibility of a solution is not dependent on the bidding vector
but only on the contribution and demand parameters, according to Equation (4.1).
Since Ak(b, ϵ) leaves unaltered both the qualities of the workers and the demands of the
tasks, any subset of workers from Lk(c) that is a feasible solution for the bidding profile
b is also a feasible solution for b̄. Consequently, it suffices to show that W∗ ⊆ Lk(c).
But note that any worker i who does not belong to Lk(c), satisfies ci > 2k+1. Hence, i

cannot be part of the optimal solution W∗, since we have assumed that OPT(b) < 2k+1.

Combining the established inequalities, we get that SOL ≤ (1 + ϵ)OPT(b).

Using Lemma 4.4.1, we can achieve the desired approximation by checking all
possible values for k. However, to provide a polynomial-time mechanism, we can only
test polynomially many such values, and hope that we compute the same outcome as
if we were able to test all such algorithms. We will show that Algorithm 4.5, that tests
all values up to a certain threshold, is what we need.

Algorithm 4.5: AFPTAS(b, ϵ)
▷ Input: A bidding profile b = (c, I) of a cmic instance ((c, I), q, d), ϵ ∈ (0, 1)

1 for k = 0, . . . , ⌈log
Ä

ncmax(b)
ϵ

ä
⌉ do

2 Run Ak(b, ϵ) and store the winning set and its cost.
3 return the set of workers that achieve the minimum cost among the above,

breaking ties in favor of the algorithm with the lowest index

Let k∗(b) := ⌈log
Ä

ncmax(b)
ϵ

ä
⌉ (or simply k∗ when the bidding profile is clear from

the context). To see that the algorithm is well-defined, recall that cmax(b) ≥ 1 and
since also n

ϵ
≥ 1, we have that k∗ ≥ 0. To establish that this is indeed a FPTAS, we
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prove in the following lemma that one cannot find a better solution by running an
algorithm Ak for a value of k higher than k∗. In combination with Lemma 4.4.1, this
directly establishes that AFPTAS is a FPTAS for cmic.

Lemma 4.4.2. Given an instance of cmic and an ϵ ∈ (0, 1), it holds that WAk(b) =
WAk∗ (b), for every k > k∗(b).

Monotonicity of AFPTAS

To establish monotonicity, we will make use of the following operator:

Definition 4.4.1. Let A = {A0, A1, . . . } be the set of all allocation algorithms
Ak. For a profile b and a finite collection of algorithms S ⊆ A, let MIN(S, b) :=
arg minA∈S C(A, b), with ties broken in favor of the lowest index.

Given a profile b, the algorithm AFPTAS can be expressed as MIN{A0, . . . , Ak∗(b)}.
Hence, the next step is to determine when is the MIN operator monotone. The
framework of Briest et al. (2011) defines a set of sufficient conditions, for maximization
objectives. We adapt these properties below, and we note that they are sufficient
conditions for minimization problems as well.

Definition 4.4.2. A monotone allocation algorithm A is bitonic w.r.t. the social cost
function C if for any bidding profile b and any worker i, the following hold:

1. i ∈ WA(b) ⇒ C(A, b) ≥ C(A, (b′
i, b−i)) ∀b′

i ⪰ bi

2. i ̸∈ WA(b) ⇒ C(A, b) ≥ C(A, (b′
i, b−i)) ∀b′

i ⪯ bi

Lemma 4.4.3. For k ≥ 0, Algorithm 4.4 is monotone and bitonic w.r.t. the social
cost function C.

Proof. To prove first the monotonicity of Ak, fix a bid vector b and a bidder i ∈ WAk
(b).

We will prove that when bidder i issues a bid b′
i ⪰ bi it will hold that i ∈ WAk

(b′
i, b−i).

Suppose that b′
i = (c′

i, [s′
i, f ′

i ]). Firstly, it is clear that i ∈ WAk
(b) implies i ∈ Lk(c) and

since b′
i ⪰ bi, this means that c′

i ≤ ci, therefore, it trivially holds that i ∈ Lk(c′
i, c−i)

and in fact Lk(c) = Lk(c′
i, c−i). Moreover, c̄′

i ≤ c̄i.
The last step of Algorithm Ak is to run the dynamic programming procedure DP.

Since, DP is an optimal algorithm and with a consistent, deterministic, tie-breaking rule,
it is easy to verify that it is also monotone. Hence, if i ∈ WDP(b̄), then i ∈ WDP(b̄′

i, b̄−i),
because b̄′

i ⪰ b̄i, and therefore

i ∈ WAk
(b) =⇒ i ∈ WAk

(b′
i, b−i). (4.4)
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We continue with proving the bitonicity of Ak w.r.t. the social cost function C. For
the first statement in Definition 4.4.2, given k, a bidding profile b, a bidder i ∈ WAk

(b)
and a bid b′

i ⪰ bi, we have

C(Ak, b) =
∑

j∈WAk
(b)\{i}

cj + ci ≥
∑

j∈WAk
(b)\{i}

cj + c′
i

=
∑

j∈WAk
(b′

i,b−i)\{i}
cj + c′

i = C(Ak, (b′
i, b−i)).

The inequality holds since b′
i ⪰ bi implies that ci ≥ c′

i. Also, regarding the second equal-
ity, we note that it may not necessarily be the case that WAk

(b)\{i} = WAk
(b′

i, b−i)\{i}.
However, for all the optimal solutions containing i, of the instance for which the dy-
namic programming algorithm DP is run by Ak, the total cost of the selected workers
other than i must be the same. These solutions will remain optimal when i bids c′

i and
this justifies the second equality above.

For the second statement of Definition 4.4.2, consider an integer k, a bidding
profile b, a bidder i ̸∈ WAk

(b), and a bid b′
i with b′

i ⪯ bi. Clearly, If i ̸∈ Lk(c) then
i ̸∈ Lk(c′

i, c−i), since b′
i ⪯ bi implies that c′

i ≥ ci. Therefore bidder i ̸∈ WAk
(b′

i, b−i),
which means that C(Ak, b) = C(Ak, (b′

i, b−i)). On the other hand, when i ∈ Lk(c) but
i ̸∈ WDP((b̄)), it will also hold that i ̸∈ WDP(b̄′

i, b̄−i), since DP is monotone. Again,
this implies that C(Ak, b) = C(Ak, (b′

i, b−i)).

Lemma 4.4.3 will be used in conjunction with the following one, which is implied
by Briest et al. (2011). For completeness, we present a proof of it.

Lemma 4.4.4. (implied by Briest et al. (2011)) For a profile b, MIN({A0, . . . , Aℓ}, b)
is monotone if A0, . . . , Aℓ are monotone algorithms that are additionally bitonic w.r.t.
the social cost function C.

Proof. Denote by WMIN(b) the set of winners returned by MIN({A0, . . . , Aℓ}, b), for
a profile b and assume that MIN({A0, . . . , Aℓ}) is not monotone. Then, there exists
a specific bidding profile, say b, a bidder i ∈ WMIN(b) and a bid b′

i ⪰ bi such that
i ̸∈ WMIN(b′

i, b−i). Let Aj be the algorithm that returns the solution WMIN(b) with
k ∈ {0, . . . , ℓ}. This means that

C(Aj, b) ≤ C(Ak, b), for k = 0, . . . , ℓ,

and moreover, from the bitonicity of Aj it holds that
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C(Aj, b) ≥ C(Aj, (b′
i, b−i)).

Let Am be the algorithm that returns the solution Wmin(b′
i, b−i) (which by assump-

tion does not include bidder i) with m ∈ {0, . . . , ℓ}. Note that j ̸= m, otherwise, we
would immediately obtain a contradiction to the fact that Aj is monotone. For Am we
have that

C(Am, (b′
i, b−i)) ≤ C(Ak, (b′

i, b−i)), for k = 0, . . . , ℓ.

Now from the bitonicity of Am (second sentence of Definition 4.4.2, and using b as
a deviation from (b′

i, b−i)), we have

C(Am, (b′
i, b−i)) ≥ C(Am, b).

By combining the inequalities above we have that for all k = 0, . . . , ℓ, the following
hold:

C(Ak, b) ≥ C(Aj, (b′
i, b−i)) (4.5)

C(Ak, (b′
i, b−i)) ≥ C(Am, b) (4.6)

If we set k = m in Equation (4.5) and k = j in Equation (4.6), then we obtain

C(Am, b) = C(Aj, (b′
i, b−i)).

But we have already argued that C(Am, b) ≥ C(Aj, b) ≥ C(Aj, (b′
i, b−i)). Hence

C(Aj, b) = C(Am, b). Since j ̸= m, it must be that j < m due to our tie-breaking
rule. But note that C(Aj, (b′

i, b−i)) ≥ C(Am, (b′
i, b−i)) ≥ C(Am, b) = C(Aj, (b′

i, b−i)).
Therefore, C(Aj, (b′

i, b−i)) = C(Am, (b′
i, b−i)). This means that again, due to the

tie-breaking rule, we should have picked the solution of Aj and not of Am, under the
profile (b′

i, b−i), reaching a contradiction.

Before we proceed, we would like to comment on a subtle point regarding the MIN
operator. We stress that the set of algorithms Ak that are called by AFPTAS, depends
on the input profile b. There is no a priori fixed set of algorithms that are run in every
profile, but instead, this is determined by the quantity k∗(b). As a result, Lemma
4.4.4 does not suffice on its own. For the monotonicity of AFPTAS, we also need to
consider the case that a winning worker declares a lower cost that changes cmax(b),
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and decreases the number of algorithms that AFPTAS runs. This is where Lemma 4.4.2
comes to rescue, as explained in the proof of Theorem 4.4.3, and this is where the
flaw in Chen et al. (2019) is located (i.e., the algorithm of Chen et al. (2019) does not
perform enough iterations, as explained further in Section B.3 of the Appendix).

Given the above discussion, by performing a suitable case analysis and by using
Lemmas 6 and 7, we can prove the following theorem, which also completes the proof
of Theorem 4.4.1 and concludes this section.

Theorem 4.4.3. For the domain of bidding profiles b, such that cmin(b) ≥ 1, the
algorithm AFPTAS is monotone.

Proof. Consider a bidder i ∈ WAFPTAS(b), and consider a deviation from bi to b′
i =

(c′
i, [s′

i, fi]′), with b′
i ⪰ bi. For brevity, let (b′

i, b−i) = b′. We distinguish the following
cases:
Case 1: Suppose that the deviation to b′

i is such that the quantity k∗(b′) remains
unaffected, and equal to k∗(b), as before the deviation (e.g. if cmax(b) = cmax(b′)
or if cmax(b′) did not change significantly so as to affect k∗(b)). Then, AFPTAS runs
exactly the same set of algorithms under both b and b′ and in both cases corresponds
to MIN({A0, A1, . . . , Ak∗(b)}). But then, by applying Lemma 4.4.4, we have that
i ∈ WAFPTAS(b′) , and we are done.
Case 2: Suppose that the deviation is such that k∗(b′) < k∗(b). This implies that ci =
cmax(b) and c′

i < ci. It should also hold that ci > cmax(b−i) = max
j∈N \{i}

cj. Thus, worker
i declares a lower cost and causes a decrease in the number of algorithms that AFPTAS

will use under b′. In particular, AFPTAS(b′) corresponds to MIN({A0, . . . , Ak∗(b′)}, b′)
and, again, we need to show that i remains a winner.

Case 2a: Suppose that c′
i ≥ cmax(b−i). Then, by applying Lemma 4.4.2 for profile

b′ and k = k∗(b′)+1, . . . , k∗(b), it holds that WAk∗(b′)(b
′) = WAk

(b′). But this implies
that calling MIN({A0, . . . , Ak∗(b′)}, b′) is equivalent to MIN({A0, . . . , Ak∗(b)}, b′). By
applying Lemma 4.4.4 the theorem follows.

Case 2b: Suppose that c′
i < cmax(b−i). For convenience, we view b′

i as a deviation
consisting of two steps: a deviation from bi to b′′

i = (cmax(b−i), [s′
i, f ′

i ]), and a deviation
from b′′

i to b′
i. Note that it holds that both b′′

i ⪰ bi and b′
i ⪰ b′′

i . In the first deviation,
from bi to b′′

i , the maximum cost changes from ci to cmax(b−i). Let b′′ = (b′′
i , b−i).

We will have that k∗(b′′) < k∗(b), and we can use again the same argument, as in
Case 2a, to conclude that i ∈ AFPTAS(b′′). Consider the second deviation from b′′

i to
b′

i. By lowering further the cost, worker i will not affect the maximum cost, since
cmax(b′) = cmax(b′′) = cmax(b−i). But this means that k∗(b′′) = k∗(b′), and the
argument of Case 1 applies, so that we can conclude that i ∈ AFPTAS(b′).
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4.5 Generalization to Non-Interval Structures

The focus of our work in this chapter has been largely on highlighting the difference on
the approximation ratio between truthful and non-truthful algorithms. We conclude
this chapter by showing that one can get tighter results, when moving to more general
scenarios. A direct generalization of cmic is to drop the linear arrangement of the
tasks, and allow each worker j ∈ N to declare an arbitrary subset of tasks Ij ⊆ [m].
The rest of the input remains the same (costs, contributions and demands), and we
refer to this problem as Cost Minimization Demand Cover (cmdc). Notice that cmdc
with qi = 1 for every worker i, and dj = 1 for every task j, is nothing but the famous
set cover problem.

Further extensions of cmdc have been studied under various names in a series of
works regarding covering integer programs, see e.g., Kolliopoulos and Young (2005);
Rajagopalan and Vazirani (1993), and approximation algorithms that match the
factor of Algorithm 4.1 exist (see e.g. Carr et al. (2000); Fujito and Yabuta (2004);
Koufogiannakis and Young (2013); Pritchard and Chakrabarty (2011)). However,
the focus of these works was not about the monotonicity of their algorithms. It is
unclear if any of these algorithms are monotone (and in fact some of them are certainly
non-monotone, as they are based on the construction of certain approximate separation
oracles).

Towards obtaining a monotone algorithm, a careful inspection of the proofs of
Section 4.3, suffices to deduce that Algorithm 4.1 can be used for this more general
setting as well (after defining first the appropriate generalization of lmis) and it
continues to yield the ∆ factor for cmdc. Furthermore, under this setting, Algorithm
4.1 yields essentially a tight result, according to the following Proposition. The proof
of Proposition 4.5.1 is straightforward due to the hardness results for k-uniform
hypergraph vertex cover Dinur et al. (2005); Khot and Regev (2008), which is a
special case of set cover, and therefore a special case of cmdc.

Proposition 4.5.1. For the class of instances where ∆ is constant, cmdc is ∆ − 1 − ϵ

inapproximable, unless P = NP , and ∆ − ϵ inapproximable assuming the Unique
Games Conjecture.

Proof. Firstly we will give the definition of the problem k-uniform hypergraph
vertex cover. We remind the reader that a k-uniform hypergraph H = (V, E)
consists of a set of vertices V , and a collection E, of k-element subsets of V called
hyperedges. A vertex cover of H is a subset of vertices S such that every hyperedge
in E has a non-empty intersection with S. The k-uniform hypergraph vertex
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cover problem is the problem of finding a minimum size vertex cover in a k-uniform
hypergraph. Let k be a constant. Assuming the unique games conjecture, Khot and
Regev (2008) proved a k − ϵ inapproximability result for this problem and furthermore,
Dinur et al. (2005) proved that it is NP-hard to approximate k-uniform hypergraph
vertex cover within a factor of (k − 1 − ϵ), for any small ϵ.

To prove the proposition, we establish that this problem is a special case of cmic.
Indeed, given a hypergraph H, we can view the vertices as workers and the hyperedges
as tasks. We say that a worker w is capable of executing a task t, if the hyperedge
that corresponds to t contains the vertex that corresponds to w. Let every worker
have unit bid and contribution. Additionally, let the demand of every task be equal to
1. Evidently, ∆ = k. Then, the existence of a vertex cover of H of a certain size is
equivalent to the existence of a set of workers, that are able to execute all tasks at a
cost that equals the size of the cover.

Finally, we note that the algorithms of Section 4.4 can in principle also be applied
for cmdc with no loss in the approximation factor, but at the expense of a much higher
running time (doubly exponential in m, which still remains polynomial, as long as the
number of tasks is a constant).





Chapter 5

Budget-feasible Mechanisms for
Divisible Agents and Multiple
Levels of Service

5.1 Introduction

In Chapter 4, we focused on procurement auctions in which the primary objective of
the auctioneer was to hire bidders in a cost-effective manner, with the implicit aim
of minimizing the payments to the bidders. However, in that scenario, there was no
strict budget constraint for the auctioneer and the feasibility of the allocation scheme
depended solely on the natural constraints of the underlying combinatorial optimization
problem.

In this chapter we examine a different class of single-parameter procurement auctions
where the auctioneer is constrained by a strict budget, meaning that the total payments
made by the auctioneer to the bidders cannot exceed a certain threshold. In this
context, the auctioneer is seeking to hire services from a group of bidders, each of
whom has a private cost parameter that represents their cost for providing the service.
It is assumed that the bidders may strategically misreport their costs. Additionally,
each hiring scheme selected by the auctioneer has a known value, which is not subject
to deception by the bidders. The goal of the auctioneer is to select a hiring scheme that
attains a good chunk of the optimal value compared to the objective of the underlying
combinatorial optimization problem (a variant of Knapsack), while also ensuring that
the total payments made by the auctioneer do not exceed the predetermined budget
threshold.
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Given the strategic behavior by the bidders, our focus in this mechanism design
problem is to devise mechanisms that incentivize the bidders to report their true
costs. Since Singer (2010) proposed the original problem, concerning an additive value
function and a simple binary environment, where bidders could either be hired or
not, a large body of work has been devoted to obtaining improved results on the
original model, as well as proposing a number of extensions. These extensions include
additional feasibility constraints, richer objectives, and additional assumptions. In this
chapter, we concentrate on two settings that have received relatively less attention in
the literature. In both settings below, the auctioneer is allowed to partially hire the
services offered by each bidder.

1. Divisible agents: In this scenario, the auctioneer is dealing with bidders who
offer a divisible service, and each bidder’s value is known to the auctioneer.
The auctioneer has the flexibility to hire each bidder for any fraction of the
service. The primary goal is to maximize the total value while ensuring that
the total payments do not exceed the budget constraint. It is worth noting that
this problem is the fractional relaxation of the one introduced by Singer (2010).
Anari et al. (2014) were the first to study the fractional problem. However, in
their work they employed a large market assumption, which, in the context of
budget-feasible mechanism design, roughly means that the cost of each bidder for
their entire service is insignificant compared to the budget of the auctioneer. Very
recently, Klumper and Schäfer (2022) revisited this problem without the “large
market” assumption but rather under the standard assumption of the literature
that the cost of each bidder for the entire service is below the budget. They came
up with a new truthful and budget-feasible mechanism that is tailored to this
specific scenario with an improved approximation guarantee compared to the
state of the art in the literature.1

2. Agents with multiple levels of service: In this scenario, each bidder offers
a service with a range of multiple levels, and the auctioneer can choose to hire
some, but not all, of the available levels of service. Furthermore, each bidder’s
value function is concave, meaning that the marginal value of each level of service
is non-increasing. The main objective is once again to maximize the total value
of the auctioneer while staying within the budget. This type of scenario was first

1All previous works addressing the problem of indivisible agents achieve an approximation guarantee
for the underlying fractional knapsack instance, which in turn guarantees an approximation to the
knapsack problem. As such, these guarantees apply to the setting examined by Klumper and Schäfer
(2022) and to the work presented in this chapter.
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introduced by Chan and Chen (2014), but in their study, they assumed that the
costs of individual levels are arbitrary, meaning that it could be the case that the
auctioneer only affords to hire a single level of service of a single bidder. Chan
and Chen (2014) were able to obtain randomized, truthful, and budget-feasible
mechanisms for this setting, with approximation guarantees that depend on the
number of bidders. The difference with our setting is that we assume that the
auctioneer has enough available budget to hire each individual bidder for all
levels of service offered, if she wishes to do so.

The two classes of procurement auctions have a number of practical applications in
various domains. For example, in the context of crowdsourcing, the divisible setting
would be useful to model the time availability of a worker as the fraction which the
auctioneer can hire. Moreover, these types of auctions can also be applied to other
industries, such as transportation and logistics, where the delivery of goods and services
can be broken down into multiple levels of service. For instance, in the transportation
industry, the first level of service can represent the basic delivery service, while the
higher levels can represent more premium and specialized services, such as express
delivery or temperature-controlled shipping. The auctioneer can then choose to hire
each bidder up to an available level of service, not necessarily the best offered, based
on the budget constraint and the value of the services provided.

Contribution In this chapter, we propose truthful and budget-feasible mechanisms
both for the divisible agents and the multiple-level scenarios. Specifically, in Section 5.3,
we present a deterministic mechanism for the divisible setting, that is truthful, budget-
feasible, and achieves a 1 +

√
2 ≈ 2.41 approximation. This mechanism represents an

adaptation of the 3-approximate posted-price mechanism proposed by Gravin et al.
(2020) for the case of indivisible agents to our fractional procurement auction model.
Our proposed mechanism improves upon the existing state-of-the-art mechanism of
Klumper and Schäfer (2022), which achieves a 1 + ϕ ≈ 2.62 approximation. Next, in
Section 5.4, we introduce a deterministic mechanism that is truthful, budget-feasible,
and achieves a 2 +

√
3 ≈ 3.73 approximation for the multiple levels of service scenario.

For this setting, no constant-factor approximation mechanism was previously known2.
2Note that this mechanism is not comparable to the results of Chan and Chen (2014), since, in

their setting, they assume that the auctioneer can only afford to hire a single bidder on their own for
a single level.
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5.1.1 Related Work

The design of truthful budget-feasible mechanisms was introduced by Singer (2010), who
gave a deterministic mechanism for additive valuation functions with an approximation
guarantee of 5, along with a lower bound of 2 for deterministic mechanisms. This
guarantee was subsequently improved to 2 +

√
2 ≈ 3.41 by Chen et al. (2011), who

also provided a lower bound of 2 for randomized mechanisms and a lower bound of
1 +

√
2 ≈ 2.41 for the deterministic case. Gravin et al. (2020) gave a 3-approximate

deterministic mechanism, which is the best guarantee for deterministic mechanisms,
known to date. Regarding randomized mechanisms, Gravin et al. (2020) settled the
question by providing a 2-approximate randomized mechanism, matching the lower
bound of Chen et al. (2011). Finally, the question has also been settled under the large
market assumption by Anari et al. (2014), who extended their e

e−1 ≈ 1.58 mechanism
for the fractional setting we have mentioned above to the indivisible agents case.

For indivisible agents, the problem has also been extended to richer valuation
functions. This line of inquiry also started by Singer (2010), who gave a randomized
algorithm with an approximation guarantee of 112 for a monotone submodular objec-
tive. Once again, this result was improved by Chen et al. (2011) to a 7.91 guarantee,
and the same authors devised a deterministic mechanism with a 8.34 approximation.
Subsequently, the bound for randomized mechanisms was improved by Jalaly and
Tardos (2018) to 5. Very recently, Balkanski et al. (2022) proposed a new method
of designing mechanisms that goes beyond the sealed-bid auction paradigm we are
following throughout this dissertation. Instead, Balkanski et al. (2022) presented mech-
anisms in the form of deterministic clock auctions3 and, for the monotone submodular
case, present a deterministic clock auction which achieves a 4.75 guarantee.

Beyond monotone submodular valuations, it becomes much harder to obtain truthful
mechanisms with small constants as approximation guarantees. Namely, for non-
monotone submodular objectives the best sealed-bid randomized mechanism is due
to Amanatidis et al. (2019) and its approximation guarantee is 505. While there
is no known deterministic sealed-bid mechanism with a constant approximation for
this class of valuations, Balkanski et al. (2022) have provided a deterministic clock
auction mechanism which is 64-approximate. Richer valuations that have been studied
are XOS valuation functions (see Amanatidis et al. (2017); Bei et al. (2017)) and
subadditive valuation functions (see Balkanski et al. (2022); Bei et al. (2017); Dobzinski
et al. (2011)). For subadditive valuation functions, no mechanism achieving a constant
approximation is known. However, Bei et al. (2017) have proved that such a mechanism

3We give the definition of a clock auction and briefly discuss clock auctions in Section 6.2.3.
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should exist, using a non-constructive argument. Finding such as mechanism is an
intriguing open question.

Finally, other settings that have been studied include environments with underlying
feasibility constraints, such as downward-closed environments (Amanatidis et al., 2016)
and matroid constraints (Leonardi et al., 2017) and auction environments in which the
auctioneer wants to get a set of heterogeneous tasks done. In this setting, each task
requires that the hired agent has a certain skill, see Goel et al. (2014).

5.2 Model and Preliminaries

We consider a scenario where a procurement auction is being held by an auctioneer
who has a budget B > 0. The auction is for a service that will be provided by a set
of bidders N = {1, . . . , n}. Each bidder i ∈ N has a private cost parameter ci > 0,
that represents their true cost for providing the service. In this extended model of
budget-feasible mechanism design, the auctioneer is allowed to hire bidders partially
and the value he derives from each hiring scheme is public information. Bidders cannot
deceive the auctioneer about this value, and it can be considered as data available on
a website or a public forum.

A deterministic auction mechanism M in this setting consists of an allocation
algorithm x : Rn

≥0 7→ Rn
≥0, coupled with a payment rule p : Rn

≥0 7→ Rn
≥0. To begin with,

the auctioneer collects a vector of bids from the bidders, denoted by b = (bi)i∈N . Here, bi

denotes the cost declared by bidder i ∈ N , which may differ from their true cost ci. The
auctioneer then determines an allocation (hiring scheme) x(b) = (x1(b, . . . , xn(b))),
where xi(b) ∈ R≥0 is the allocation decision for bidder i. Then, the auctioneer
determines a vector of payments p(b) = (p1(b), . . . , pn(b)), where pi(b) is the payment
bidder i will receive for their service.

We assume that bidders have quasi-linear utilities, i.e., for a deterministic procure-
ment auction mechanism M = (x, p), the utility of bidder i ∈ N for a profile b is
ui(b) = pi(b) − cixi(b). We are interested in designing mechanisms that satisfy three
properties for any true profile c and any declared profile b:

• Individual rationality: All bidders i ∈ N should have a utility of at least 0, i.e.,
ui(b) ≥ 0.

• Budget Feasibility: The sum of all payments made by the auctioneer, ∑
i∈N pi(b),

should not exceed the budget B.
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• Truthfulness: All bidders i ∈ N should have no incentive to lie about their true
cost, i.e., ui(ci, b−i) ≥ ui(b).

As in Chapters 2 and 4, this is a single-parameter environment and the charac-
terization of Myerson (1981) applies. Therefore it is sufficient to focus on the class
of mechanisms with monotone allocation algorithms. Similarly to the definition of
Chapter 4, an allocation algorithm is monotone if for every bidder i ∈ N , every profile
b, and all b′

i ≤ bi, we have xi(b) ≤ xi(b′
i, b−i). However it is a slightly more involved

task to compute the payments of the bidders in this case. The reason behind this
is the fact that the procurement auction settings we study in this chapter, are not
binary single-parameter domains i.e., bidders may be selected in an allocation partially.
Fortunately, this case is also handled in the work of Myerson (1981). Below we present
Myerson’s Lemma in its complete form, which is commonly referred to in the literature
as Myerson’s payment identity.

Lemma 5.2.1. Given a monotone allocation algorithm x, there is a unique payment
rule p, such that M = (x, p) is a truthful and individually rational mechanism. For
every profile b, the payment to bidder i ∈ N is

pi(b) = bixi(b) +
∫ ∞

bi

xi(y, b−i)dy. (5.1)

Given an allocation x, the total value the auctioneer obtains is denoted by V (x).
The exact form of this function depends on the setting we are studying and will be
formalized in the paragraphs that follow.

In the sequel, we will consistently refer to the true valuation profile of bidders as c,
rather than b. This is because we will be exclusively presenting provably monotone
allocation algorithms and payments to bidders will be determined by Equation (5.1).
In the remainder of this chapter, we present the two settings we study.

5.2.1 Divisible Agents

In the “divisible agents” setting, we are allowed to hire each bidder for any arbitrary
percentage of their full service. To be precise, given a profile c, we have that x(c) ∈
[0, 1]n. Moreover, for each bidder i ∈ N , the auctioneer has access to a publicly known
parameter vi > 0, which represents how valuable the bidder is, should she get hired
entirely. Finally, we assume that c is such that each bidder can be hired fully on their
own, i.e., for all i ∈ N , it holds that ci ≤ B, as in the work of Klumper and Schäfer
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(2022). Note that this assumption is much weaker than the large market assumption
of Anari et al. (2014).

In this scenario, V (x(c)) = ∑
i∈N vixi(c), is the total value the auctioneer enjoys

under the allocation x(c). To evaluate the performance of a monotone and budget-
feasible mechanism M = (x, p), we compare its respective V (x(c)) with

OPTF (c) := max
®

n∑
i=1

vixi | (xi)n
i=1 ∈ [0, 1]n,

n∑
i=1

cixi ≤ B

´
,

which is precisely the fractional relaxation of Knapsack. Oftentimes, this problem is
also mentioned in the literature as the setting with fractional additive valuations. Thus,
for the divisible agents scenario, we say that a mechanism M = (x, p) is α-approximate
if, given an α > 1, and for every profile c, it holds that V (x(c)) ≥ 1

α
OPTF (c).

5.2.2 Multiple Levels of Service

In this alternative extension of the classical budget-feasible mechanism design model,
each bidder i ∈ N is offering k levels of service. Analogously to the “divisible agents”
case, we assume that the auctioneer can afford hiring each bidder entirely on their own,
i.e., given a profile c, it holds that cik ≤ B for all i ∈ N . Moreover, for each bidder
i ∈ N , we associate a value function vi : {0, . . . , k} 7→ R+ with vi(0) = 0. Each function
vi(·) is concave i.e., for j = 1, . . . , k −1, it holds that vi(j)−vi(j −1) ≥ vi(j +1)−vi(j).
For notational convenience, let mi(j) := vi(j) − vi(j − 1). Thus, given a profile c, the
total value the auctioneer enjoys under an allocation is V (x(c)) = ∑

i∈N vi(xi(c)), a
concave separable function. We will be measuring the performance of a mechanism
comparing V (x(c)) with the underlying non-strategic combinatorial optimization
problem, which in this case is

OPT k
I (c) := max

®
n∑

i=1
vi(xi) | (xi)n

i=1 ∈ {0, . . . , k}n,
n∑

i=1
cixi ≤ B

´
,

a problem commonly referred to as Bounded Knapsack4 (e.g. see Martello and Toth
(1990) for a classification of knapsack problems). For the “multiple levels of service”
scenario, we say that a mechanism M = (x, p) is α-approximate if, given an α > 1
and for every profile c, it holds that V (x(c)) ≥ 1

α
OPT k

I (c).
It is often the case in the literature for the fractional relaxation of an integral

knapsack problem (a quantity that can be computed in polynomial or pseudopolynomial
4Note that for k = 1, this becomes the well-known 0-1 Knapsack problem.



114 Budget-feasible Mechanisms for Divisible Agents and Multiple Levels of Service

time) to be used as a proxy in order to approximate the integral problem (which is
NP-Hard). To be precise, given a profile c, we define the fractional relaxation of the
Bounded Knapsack problem for k units as

OPT k
F (c) := max

{
n∑

i=1
(vi(⌊xi⌋) + mi(⌈xi⌉)(xi − ⌊xi⌋)) | (xi)n

i=1 ∈ [0, . . . , k]n,

n∑
i=1

cixi ≤ B

}
,

Note that OPT 1
F (c) is the fractional relaxation of knapsack, defined as OPTF (c) in

Section 5.2.1. Thus, OPT k
F (c) inherits the well-known properties of its one-dimensional

analogue.

Fact 5.2.1. Let (c, (v1(·), . . . , vn(·)), B) be an instance of the fractional relaxation of
a Bounded Knapsack instance for k units. Then, Algorithm 5.1 returns a vector x∗

which is a solution to OPT k
F (c) in time O(kn log(kn)).

Algorithm 5.1: An Algorithm for Fractional k-Bounded Knapsack
▷ Input: An instance c, (v1(·), . . . , vn(·)), B.

1 Initialize an empty list of kn elements.
2 for i ∈ n do
3 for j = 1, . . . , k do
4 Add mi(j)

ci
to the list.

5 Sort the elements of the list in decreasing order.
6 Let x∗ = 0 and j = 1.
7 while ∑

i∈N cix
∗
i ≤ B do

8 Let ℓ ∈ {1, . . . , n} be the index corresponding to the j-th
marginal-value-per-cost in the list.

9 Set x∗
ℓ = x∗

ℓ + min
(

B−
∑

i∈N
cix

∗
i

cℓ
, 1
)

.
10 Set j = j + 1.
11 Return x∗.

Observe that Algorithm 5.1 assigns a fractional xi to at most one i ∈ {1, . . . , n}.
Naturally, it also holds that OPT k

F (c) ≥ OPT k
I (c).

5.3 A Truthful and Budget-Feasible Mechanism for
Divisible Agents

In this section, we present a novel mechanism for divisible agents that is both truthful
and individually rational while also being budget-feasible. Our mechanism achieves
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a 1 +
√

2 approximation ratio, which improves upon the state-of-the-art mechanism
proposed by Klumper and Schäfer (2022), which achieved a (1 + ϕ) approximation
ratio. Our mechanism is a posted-price mechanism, where appropriate take-it-or-leave-
it prices are offered to bidders in the final step. A similar approach was taken by
Gravin et al. (2020) to obtain a 3-approximate mechanism in the case when agents are
indivisible, as in the classical setting of Singer (2010). The added flexibility of being
able to allocate fractionally allows our mechanism to achieve even better results.

In order to determine the appropriate posted prices to be offered, it is important to
first exclude bidders with a low value-per-cost ratio. To achieve this, we propose an
adapted pruning allocation algorithm inspired by the work of Gravin et al. (2020) in
Section 5.3.1. This mechanism is used to obtain a provisional allocation that can be
further modified based on information elicited by posted prices, as detailed in Section
5.3.2.

We establish that the proposed composition of mechanisms is truthful, individually
rational, and budget-feasible, with an improved performance guarantee.

5.3.1 A Pruning Algorithm for Divisible Agents

We first present the pruning algorithm of Gravin et al. (2020). This algorithm is part
of the 3-approximate mechanism Gravin et al. (2020) present for the case of indivisible
agents. However, it will be a useful starting point for the setting of divisible agents as
well.

Given a profile c, this algorithm computes an allocation x̄(c) and a positive quantity
r(c), which we refer to as the rate. We assume that the bidders are initially relabeled
by their decreasing value-per-cost ratio, i.e. v1

c1
≥ v2

c2
≥ · · · ≥ vn

cn
.

Algorithm 5.2: The Pruning Algorithm of Gravin et al. (2020)
▷ Input: A profile c such that v1

c1
≥ v2

c2
≥ · · · ≥ vn

cn

1 Let r := 1
B

max{vi | i ∈ N}.
2 For i ∈ N , set x̄i = 1 if vi

ci
≥ r and x̄i = 0 otherwise.

3 Let ℓ := arg max{i | x̄i = 1}.
4 while rB <

∑ℓ
i=1 vi − max{vi | i = 1, . . . , ℓ} do

5 Continuously increase rate r.
6 If vℓ

cℓ
≤ r, set x̄ℓ = 0 and ℓ = ℓ − 1.

7 return (r, x̄)
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Notice that x̄ ̸= 0, since the condition of the while-loop is violated should ℓ = 1
and, therefore, the provisional allocation is never empty.

Suppose now that we consider Algorithm 5.2 to be the allocation algorithm of a
mechanism. It is not hard to observe that this algorithm is monotone and this property
is naturally proven by Gravin et al. (2020). In fact, an even stronger property holds
and we present it in Lemma 5.3.1.

Lemma 5.3.1 (Implied by Lemma 3.1 of Gravin et al. (2020)). Let c be a profile. Fix
a bidder i ∈ N such that x̄i(c) = 1. Then, for all c′

i such that x̄i(c′
i, c−i) = 1, it holds

that

1. x̄(c′
i, c−i) = x̄(c).

2. r(c′
i, c−i) = r(c).

Lemma 5.3.1 asserts that a bidder who has been selected in the provisional alloca-
tion cannot alter the outcome of Algorithm 5.2 by declaring a signal (cost) unilaterally
that keeps her in the set of hired bidders. As a result, Algorithm 5.2 can be used as
a preliminary filtering step to eliminate unappealing bidders in mechanism composi-
tion schemes. If the subsequent allocation algorithm, which given a profile c, takes
(r(c), x̄(c)) as input, is monotone, then the resulting allocation algorithm is monotone
as well.

In the remaining part of this section, for the sake of brevity, we shall omit mentioning
the dependence on profile c. Furthermore, we shall frequently make references to the
bidder with the highest value in the provisional allocation. To facilitate our analysis,
we define i∗ = arg maxi∈N{vi | x̄i = 1}. The properties that follow, proved by Gravin
et al. (2020), will be valuable in our analysis.

Lemma 5.3.2 (Lemma 3.2 of Gravin et al. (2020)). Let (r, x̄) be the output of Algorithm
5.2 for profile c. Then

1. ci ≤ vi

r
≤ B, for all i ∈ N with x̄i = 1.

2. V (x̄) − vi∗ ≤ rB < V (x̄).

3. OPTF ≤ V (x̄) + r · (B − ∑
i∈N cix̄i).

Property 1 essentially affirms that any bidder included in the provisional allocation
will accept a posted price of vi

r
. Property 2 of Lemma 5.3.2, not only establishes an



5.3 A Truthful and Budget-Feasible Mechanism for Divisible Agents 117

upper and lower bound for r but also directly implies that, for a provisional allocation
x̄, there exists a z ∈ [0, 1) such that

V (z, x̄−i∗) = rB. (5.2)

Therefore, we can introduce an additional step after Algorithm 5.2, allowing us to
allocate fractionally by reducing the provisional allocation of the highest-valued bidder
i∗ from 1 to z. This additional flexibility yields Equation (5.2) which, in turn, leads us
to a restatement of Property 3 of Lemma 5.3.2.

Observation 5.3.1. Let (r, x̄) be the output of Algorithm 5.2 for profile c, and let
z ∈ [0, 1) be such that Equation (5.2) holds. Then,

OPTF ≤ (1 − z)vi∗ + 2V (z, x̄−i∗) − r
∑
i∈N

cix̄i. (5.3)

Proof. We can rewrite Property 3 of Lemma 5.3.2 as

OPTF ≤ V (x̄) + r ·
Ç

B −
∑
i∈N

cix̄i

å
= V (x̄) + rB − r

∑
i∈N

cix̄i

= (1 − z)vi∗ + V (z, x̄−i∗) + V (z, x̄−i∗) − r
∑
i∈N

cix̄i.

The second equality is due to the definition of V (x) for a vector x ∈ [0, 1]n and due to
Equation (5.2).

Throughout the rest of our analysis, Equation (5.3) will serve as the central point
and guide our selection of appropriate posted prices in the mechanism of Section 5.3.2.

5.3.2 An Adaptive Posted-price Mechanism

In this section we a truthful, individually rational and budget-feasible mechanism that
achieves a (1 +

√
2) approximation ratio when agents are divisible.

The mechanism first applies the pruning algorithm of Gravin et al. (2020) and
potentially singles out the highest-valued bidder in the provisional allocation. Then,
depending on the comparison between the value of this bidder and the total value
achieved by the other provisionally allocated bidders, a different allocation scheme is
selected.
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Intuitively, if the value of the highest-valued bidder is high enough, then this bidder
is the only one selected. Alternatively, if the value of the highest-valued bidder is low
compared to the total value of the others, then the provisional allocation is implemented
with further pruning, as presented in Section 5.3.1. Importantly, these two cases are
not mutually exclusive. In fact, there is a “middle” case in which the highest-valued
bidder is offered a posted price and, depending on his answer, may be allocated entirely
in the best case. The final component of this mechanism is that the other bidders
in the provisional allocation may also be asked to accept a posted price when the
highest-valued bidder accepts, and they may be allocated a tailored fraction. The
usefulness of this posted price scheme is due to the fact that, for a profile c, a posted
price rejection implies a lower bound on the cost ci > 0 of a bidder i ∈ N , a crucial
piece of information that we can exploit using Equation (5.3).

Let α ∈ (0, 1) be a parameter, the value of which we will specify later. Moreover,
for x ∈ [0, 1] define

λ(x) := 2
1 − x + α

− α

1 − x · (1 + α)
In Mechanism 5.3 this scheme is described. The main result of this section is

Theorem 5.3.1.

Theorem 5.3.1. Mechanism 5.3 is truthful, individually rational and budget-feasible.
Moreover, For α =

√
2 − 1 it is (1 +

√
2)-approximate.

Note that 5.3 clearly runs in polynomial time. We will prove Theorem 5.3.1 using
the three Lemmas that follow. We start by proving that the allocation algorithm of
Mechanism 5.3 is monotone.

Lemma 5.3.3. The allocation algorithm of Mechanism 5.3 is monotone, i.e., for every
profile c, every bidder i ∈ N and every c′

i ≤ ci it holds that xi(c′
i, c−i) ≥ xi(c).

Proof. Fix a bidder i ∈ N with xi > 0 and a c′
i ≤ ci. Recall that, By Lemma 5.3.1, a

unilateral deviation c′
i ≤ ci of any bidder does not alter r or the provisional allocation

x̄ of Algorithm 5.2, and as a result, it does not affect the quantity z either, in step 2.
We analyze each one of the cases named in lines 4, 6, 10 and 16 separately.

(a) In this case bidder i∗ is the only bidder with xi > 0 and no improved unilateral
deviation of i∗ can change that.

(b) Here, the output of Algorithm 5.2 with further pruning (z, x̄−i∗) is selected and,
once again, no bidder can affect this outcome unilaterally.
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Algorithm 5.3: A Posted-price Mechanism for Divisible Agents
▷ Input: A profile c such that v1

c1
≥ v2

c2
≥ · · · ≥ vn

cn
and a parameter α ∈ (0, 1)

1 Obtain (r, x̄) by running Algorithm 5.2 for profile c.
2 Let z ∈ [0, 1) be s.t. Equation (5.2) holds.
3 Let i∗ = arg maxi∈N{vi | x̄i = 1} and T = {i ∈ N \ {i∗} | x̄i = 1}.
4 if v∗

i ≥ 2
1+z+α

V (z, x̄−i∗) then
// Case (a): High-valued i∗

5 Set xi∗ = 1 and xi = 0 ∀i ∈ N \ {i∗}.
6 else if v∗

i ≤ a
1−z

V (z, x̄−i∗) then
// Case (b): Low-valued i∗

7 Set x = (z, x̄−i∗).
8 else
9 Let Bi∗ = min

¶
vi∗
r

,
vi∗ (1−z)−αV (z,x̄−i∗ )
r(1−z)λ(z)(1−z(1+α))

©
.

10 if ci∗ ≤ Bi∗ then
// Case (c): i∗ accepts posted price

11 Set xi∗ = 1.
12 for i ∈ T do

13 Let Bi = min

vi

r
,
√

2 + α · vi∑
j∈T

vj

(
B − (1 − z)Bi∗ − z vi∗

r

).

14 if ci ≤ Bi then
15 Set xi = 1√

2+α
.

16 else
17 Set xi = 0.

18 else
// Case d: i∗ rejects posted price

19 Set x = (z, x̄−i∗).

20 Allocate x and set payments according to Equation (5.1).
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(c) Since i∗ has met her posted price Bi∗ , she is assigned an allocation of xi = 1 and
this remains true for all c′

i ≤ ci. Similarly, a subset of bidders in T are allocated
1√

2+α
and this remains true for every c′

i ≤ ci.

(d) For bidders in T the argument of Case (b) applies. For i∗ we observe that since
ci∗ > Bi∗ , they are (potentially) allocated z ∈ [0, 1) and should they unilaterally
declare a c′

i∗ ≤ Bi∗ their allocation will increase to 1, as per Case 3.

Since the final payments can be described by Equation (5.1) we conclude that
Mechanism 5.3 is truthful and individually rational.

We now prove that Mechanism 5.3 is also budget-feasible.

Lemma 5.3.4. Mechanism 5.3 is budget-feasible, i.e. for every profile c it holds that∑
i∈N pi(c) ≤ B.

Proof. Payments are assigned according to Equation (5.1). We analyze each one of
the four cases (corresponding to lines 4, 6, 10 and 18 of the allocation algorithm)
separately.

(a) Bidder i∗ is the only bidder being fully allocated and thus asked to pay. The
payment identity implies that, bidder i∗ should pay the highest c′

i∗ ≥ ci so that
she remains a part of the provisional allocation, which in any case is at most B

by using the assumption that the auctioneer can always hire one bidder entirely.

(b) For every bidder i ∈ N with x̄i > 0 let c′
i ≥ ci be the highest cost she can declare

and remain a provisional winner under (c′
i, c−i). Thus, by Property 1 of Lemma

5.3.2 we have that c′
i ≤ vi

r
, for all i and by using the fact that the allocation

is (z, x̄−i∗) and since, by Lemma 5.3.1 no bidder can unilaterally change the
provisional allocation, we obtain

∑
i∈N

pi(c) = pi∗(c) +
∑
i∈T

pi(c)

= zci∗ +
∫ vi∗

r

ci∗
zdy +

∑
i∈T

Å
ci +

∫ vi
r

ci

dy

ã
= z

vi∗

r
+

∑
i∈T

vi

r
= V (z, x̄−i∗)

r
= B.

and the last equality follows by Equation (5.2).
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(c) For bidders i ∈ T , the critical bid is exactly Bi and this is the price they pay for
their fixed fractional allocation since

pi(c) = ci√
2 + α

+
∫ Bi

ci

1√
2 + α

dy = Bi√
2 + α

. (5.4)

Moreover, by the definition of the case, i∗ accepts the posted price of Bi∗ and is
assigned an allocation of 1. To compute the payment of i∗, note that if bidder i∗

declares a cost c′
i∗ > Bi∗ , her allocation will become equal to z (as she will fall

into Case d), as long as c′
i∗ ≤ vi∗

r
(by Property 1 of Lemma 5.3.2). Therefore, we

can breakdown the payment of i∗ as follows:

pi∗(c) = ci∗ +
∫ Bi∗

ci∗
dy +

∫ vi∗
r

Bi∗
zdy = (1 − z)Bi∗ + z

vi∗

r
. (5.5)

We now proceed with the upper bound on total payments. Let U be the
(potentially empty) subset of bidders in T that have accepted their posted
price, i.e. for all i ∈ U it holds that ci ≤ Bi. Then

∑
i∈N

pi(c) = pi∗(c) +
∑
i∈U

pi(c)

= pi∗(c) + 1√
2 + α

∑
i∈U

Bi

≤ pi∗(c) +
∑
i∈U

· vi∑
j∈T

vj

(
B − (1 − z)Bi∗ − z

vi∗

r

)
≤ pi∗(c) + B − (1 − z)Bi∗ − z

vi∗

r
= B.

The second equality follows by Equation (5.4) and the first inequality is true
because of the definition of Bi. Finally, the last equality is due to Equation (5.5).

(d) The analysis here is identical to Case (b).

The final component for the proof of Theorem 5.3.1 is its approximation guarantee.

Lemma 5.3.5. Let c be a profile and x(c) be the final allocation of Mechanism 5.3.
Then for α ∈ [

√
2 − 1, 1) it holds that V (x(c)) ≥ 1

2+α
OPTF (c).

Before presenting the proof of Lemma 5.3.5, we state and prove an auxiliary technical
lemma which will be useful for our analysis.
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Lemma 5.3.6. Let c be a profile and let T = {i ∈ N \ {i∗} | x̄i(c) = 1}. Then:

rB − (1 − z)Bi∗r − zvi∗ ≥
2

1−z+α

λ(z)
∑
i∈T

vi − vi∗

λ(z)

Proof. By the definition of Bi∗ we have

rB − (1 − z)Bi∗r − zvi∗ ≥ rB − vi∗(1 − z) − αV (z, x̄−i∗)
λ(z)(1 − z(1 + α)) − zvi∗

= V (z, x̄−i∗) − vi∗(1 − z) − αV (z, x̄−i∗)
λ(z)(1 − z(1 + α)) − zvi∗

=
∑
i∈T

vi − vi∗(1 − z) − α(∑
i∈T vi + zvi∗)

λ(z)(1 − z(1 + α))

=
Ç

1 +
α

1−z(1+α)

λ(z)

å∑
i∈T

vi − vi∗

λ(z) .

The first equality follows by Equation (5.2). The second equality follows by the fact
that V (z, x̄−i∗) = ∑

i∈T vi + zv∗
i . Then, the last equality is just a rearrangement of

terms.

We now present the proof of Theorem 5.3.1.
Proof of Lemma 5.3.5. Recall that by Equation (5.3) we have

OPTF ≤ (1 − z)vi∗ + 2V (z, x̄−i∗) − r
∑
i∈N

cix̄i.

(a)

OPTF ≤ (1 − z)vi∗ + 2V (z, x̄−i∗) − r
∑
i∈N

cix̄i

≤ (1 − z)vi∗ + 2vi∗
1 + z + a

2 = (2 + α)vi∗ = (2 + α)V (x).

The second inequality follows by the definition of the case we are considering,
and the equality follows by observing that xi∗ = 1 and xi = 0 for all i ̸= i∗.
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(b) In this case x = (z, x̄−i∗). Similarly to case (a)

OPTF ≤ (1 − z)vi∗ + 2V (z, x̄−i∗) − r
∑
i∈N

cix̄i

≤ (1 − z) α

1 − z
V (z, x̄−i∗) + 2V (z, x̄−i∗)

= (2 + α)V (z, x̄−i∗) = (2 + α)V (x).

(c) Let U be the subset of T such that ci ≤ Bi. Note that

xi =


1 i = i∗

1√
2+α

i ∈ U

0 otherwise

The definition of the case, i.e. that α
1−z

V (z, x̄−i∗) < vi∗ < 2
1+z+α

V (z, x̄−i∗) has a
few implications that will be useful in our analysis which we now prove

Claim 5.3.1. Under Case (c), the following are true:

1) α
1−z(1+α)

∑
i∈T vi < vi∗ < 2

1−z+α

∑
i∈T vi.

2) z < 1 − α.

3) T ̸= ∅.

4) λ(z) > 0.

Proof. 1) For the lower bound we have

vi∗ >
α

∑
i∈T vi

1 − z(1 + α) ⇔ vi∗

Å
1 + αz

1 − z(1 + α)

ã
>

α (∑
i∈T vi + zvi∗)

1 − z(1 + α)

⇔ vi∗

Å 1 − z

1 − z(1 + α)

ã
>

αV (z, x̄−i∗)
1 − z(1 + α)

⇔ vi∗ >
α

1 − z
V (z, x̄−i∗)

which holds by definition. Similarly, for the upper bound we have

vi∗ <
2 ∑

i∈T vi

1 − z + α
⇔ vi∗

Å
1 + 2z

1 − z + α

ã
<

2 (∑
i∈T vi + zvi∗)

1 − z + α

⇔ vi∗

Å1 + z + α

1 − z + α

ã
<

2V (z, x−i∗)
1 − z + α

⇔ vi∗ <
2

1 + z + α
V (z, x−i∗).



124 Budget-feasible Mechanisms for Divisible Agents and Multiple Levels of Service

2) By the first statement we infer that

2
1 − z + α

>
α

1 − z(1 + α)

and this can be rearraranged to z < 1 − α.

3) Suppose not, i.e T = ∅. Then, by vi∗ < 2
1−z+α

∑
i∈∅ vi = 0, a contradiction.

4) Again, by the first property, 2
1−z+α

> α
1−z(1+α) and this is equivalent to

λ(z) > 0.

Consider now the set T \ U , which is the set of bidders that did not accept their
personalized posted price Bi and yet were part of the provisional allocation x̄
of Algorithm 5.2. Therefore, by Property 1 of Lemma 5.3.2, it is also true that
ci ≤ vi

r
for all members of T \ U . By combining the two inequalities we obtain

that for these bidders

vi

r
≥ ci > Bi = min

vi

r
,
√

2 + α · vi∑
j∈T

vj

(
B − (1 − z)Bi∗ − z

vi∗

r

) .

Observe that a direct implication of this is that

Bi =
√

2 + α · vi∑
j∈T

vj

(
B − (1 − z)Bi∗ − z

vi∗

r

)
, ∀i ∈ T \ U (5.6)
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We now turn back to obtaining an upper bound on OPTF . We can rewrite
Equation (5.3) as:

OP TF ≤ (1 + z)vi∗ + 2
∑
i∈T

vi − r
∑
i∈N

cix̄i

≤ (1 + z)vi∗ + 2
∑
i∈T

vi − r
∑

i∈T \U

Bi

= (1 + z)vi∗ + 2
∑
i∈T

vi −
√

2 + α
∑

i∈T \U

vi∑
j∈T

vj

(Br − (1 − z)Bi∗ r − zvi∗ )

≤ (1 + z)vi∗ + 2
∑
i∈T

vi −
√

2 + α ·

∑
i∈T \U

vi∑
j∈T

vj

Ö
2

1−z+α

λ(z)

∑
j∈T

vj −
vi∗

λ(z)

è
=
Ç

1 + z +
√

2 + α

λ(z)

å
vi∗ +

Ñ
2 −

2
√

2+α
1−z+α

λ(z)

é∑
i∈T

vi +
√

2 + α

λ(z)

(
2

1 − z + a
−

vi∗∑
i∈T

vi

)∑
i∈U

vi

≤
Ç

1 + z +
√

2 + α

λ(z)

å
vi∗ +

Ñ
2 −

2
√

2+α
1−z+α

λ(z)

é∑
i∈T

vi +
√

2 + α
∑
i∈U

vi

≤
Ç

1 + z +
√

2 + α

λ(z)

å
vi∗ +

Ñ
2 −

2
√

2+α
1−z+α

λ(z)

é
vi∗

1 − z + α

2
+

√
2 + α

∑
i∈U

vi

= (2 + α)

Ñ
vi∗ +

1
√

2 + α

∑
i∈U

vi

é
= (2 + α)V (x).

The second equality follows by Equation (5.6), and the inequality that follows
is by Lemma 5.3.6. The remaining two inequalities follow by the properties of
Claim 5.3.1 and the fact that

Å
2 −

2
√

2+α
1−z+α

λ(z)

ã
< 0 for all z ≤ 1 − α.

(d) As in Case (b), we have that x = (z, x̄−i∗) Moreover, bidder i∗ rejects her
personalized posted price Bi∗ , i.e ci∗ > Bi∗ . However, as in Case (c), by Property
1 of Lemma 5.3.2, it also holds that ci∗ ≤ vi∗

r
and therefore we can infer that

Bi∗ = vi∗(1 − z) − αV (z, x̄−i∗)
r(1 − z)λ(z)(1 − z(1 + α)) . (5.7)
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Therefore, by Equation (5.3) we have

OPTF ≤ (1 − z)vi∗ + 2V (z, x̄−i∗) − r
∑
i∈N

cix̄i

≤ (1 − z)vi∗ + 2V (z, x̄−i∗) − rBi∗

= (1 − z)vi∗ + 2V (z, x̄−i∗) − vi∗(1 − z) − αV (z, x̄−i∗)
(1 − z)λ(z)(1 − z(1 + α))

=
Å

1 − z − 1
λ(z)(1 − z(1 + α))

ã
vi∗ +

Å
2 + α

(1 − z)λ(z)(1 − z(1 + α)

ã
V (z, x̄−i∗)

≤
ÅÅ

1 − z − 1
λ(z)(1 − z(1 + α))

ã
α

1 − z
+ 2 + α

(1 − z)λ(z)(1 − z(1 + α)

ã
V (z, x̄−i∗)

= (2 + α)V (z, x̄−i∗) = (2 + α)V (x).

The second equality follows by Equation (5.7) and the last inequality by the
properties of Claim 5.3.1 and the fact that

Ä
1 − z − 1

λ(z)(1−z(1+α))

ä
≤ 0, for

z ≤ 1 − α.

□

5.4 A Truthful and Budget-Feasible Mechanism for
Multiple Levels of Service

In this section, we propose a mechanism that is truthful, individually rational, and
budget-feasible for an auction setting where bidders can offer up to k levels of service.

We will need the following auxiliary notation to describe the mechanism. For an
allocation x, we denote by W (x) = {i ∈ N | xi > 0}, the set of bidders who have been
hired under x (either for at least one level of service in the integral case or fractionally
when we consider the relaxation of the Bounded Knapsack problem). Finally, we denote
by ℓ(x) the bidder whose xℓ(x)-th level of service is the least valuable in x, in terms
of her marginal-value-per-cost ratio. Notice that due to the fact that the valuation
functions are concave, the worst case marginal-value-per-cost ratio indeed corresponds
to the xℓ(x)-th ratio of bidder ℓ(x). For the sake of brevity, for the allocation x(c) of
Mechanism 5.4, we denote this bidder as ℓ, when it is clear from context.

The main result of this section is the next theorem.

Theorem 5.4.1. Mechanism 5.4 is a truthful, individually rational, budget-feasible
and (2 +

√
3)-approximate mechanism.
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Algorithm 5.4: A Mechanism for k Levels of Service
▷ Input: A profile c.

1 Set i∗ = arg maxi∈N
vi(k)

OP T k
F (c−i)

.
2 if vi∗(k) ≥ 1

1+
√

3 · OPT k
F (c−i∗) then

3 Set xi∗ = k and xi = 0 ∀i ∈ N \ {i∗}.
4 else
5 Denote by x∗(c) the optimal allocation of OPT k

F (c).
6 Initialize an empty list of ∑n

i=1⌊x∗
i (c)⌋ elements.

7 for i ∈ W (x∗(c)) do
8 for j = 1, . . . , ⌊x∗

i (c)⌋ do
9 Add mi(j)

ci
to the list.

10 Sort the elements of the list in decreasing order.
11 Initialize x = (⌊x∗

1(c)⌋, . . . , ⌊x∗
n(c)⌋) and let ℓ be the bidder who

corresponds to the last element of the list.
12 while V (x) − mℓ(xℓ) ≥ 1

2+
√

3OPT k
F (c) do

13 Set xℓ = xℓ − 1.
14 Remove the last element from the list and update ℓ.

15 Allocate x and set p according to Equation (5.1).

In the rest of this section, we present a set of lemmas that demonstrate the properties
described in Theorem 5.4.1. We start with the following fact, which is an obvious
property for the solution returned by the mechanism.

Fact 5.4.1. By construction, the allocation x returned by Mechanism 5.4 satisfies
xi ≤ x∗

i for every i ∈ N .

We now prove that the allocation algorithm of Mechanism 5.4 is monotone.

Lemma 5.4.1. The allocation algorithm of Mechanism 5.4 is monotone.

Proof. Let c be a bidding profile. We distinguish the following two cases.

1. vi∗(k) ≥ 1
1+

√
3 · OPT k

F (c−i∗). In this case, i∗ is hired for k levels of service.
Suppose that i∗ unilaterally decreases their cost to a c′

i∗ ≤ ci∗ . Note that such a
unilateral deviation does not alter the condition of the case, since the quantity
OPT k

F (c−i∗) does not depend on their bid. Therefore, for any such deviation,
i∗(c) will remain the sole winner and will keep being hired for k levels of service,
i.e., xi∗(c′

i∗ , c−i∗) = xi∗(c) = k. No other bidder was winning under this case,
hence there is no need to examine deviations by other bidders.

2. vi∗(k) < 1
1+

√
3 · OPT k

F (c−i∗(c)). Here, the allocation algorithm of Mechanism
5.4 is allocating to a set W (x(c)). Fix a bidder i in W (x(c)) and suppose
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she unilaterally deviates and declares c′
i ≤ ci. First of all, note that for every

j ∈ N \ {i} it holds that

vj(k)
OPT k

F (c−{j,i}, c′
i)

≤ vj(k)
OPT k

F (cj)
≤ vi∗(k)

OPT k
F (c−i∗)

Therefore, even if i∗ changes under profile (c′
i, c−i), we will always remain in the

else case on line 4 and the new set W (x(c′
i, c−i)) will not lose to the new i∗ under

(c′
i, c−i).

Consider now what happens to the while condition on line 11. On the one
hand, for the optimal allocation, it can only be that OPT k

F (c′
i, c−i) ≥ OPT k

F (c).
On the other hand, the marginal-value-per-cost ratios of bidder i under profile
(c′

i, c−i) have a better position in the ordering constructed by Mechanism 5.4.
At the same time, the unilateral deviation of bidder i may, in fact, increase the
allocation of other bidders. Crucially though, since x∗(c′

i, c−i) is constructed
by Algorithm 5.1, it is guaranteed that the new marginal-value-per-cost ratios
belonging to other bidders that enter the solution x∗(c′

i, c−i) will not move in
front of the ratios of i that guarantee i an allocation of xi(c). Note that this is
true as long as we employ a deterministic tie-breaking rule. Therefore, it holds
that xi(c′

i, ci) ≥ xi(c) and monotonicity holds.

Since the payments follow the payment identity of Equation (5.1), we conclude that
the mechanism is truthful and individually rational.

We continue by proving that Mechanism 5.4 achieves the claimed approximation
guarantee.

Lemma 5.4.2. Let c be a profile and x(c) be the final allocation of Mechanism 5.4.
Then, it holds that V (x(c)) ≥ 1

2+
√

3OPT k
I (c).

Proof. For a profile c we will prove the claimed guarantee against the optimal solution
to the fractional relaxation of the bounded knapsack instance, i.e., we will show that
V (x(c)) ≥ 1

2+
√

3OPT k
F (c). As we have mentioned in Section 5.2.2, this establishes our

guarantee since OPT k
F (c) ≥ OPT k

I (c). We will prove that Mechanism 5.4 achieves this
guarantee in each of the two cases that follow.

1. vi∗(k) ≥ 1
1+

√
3 · OPT k

F (c−i∗). We directly have

vi∗(k) ≥ 1
1 +

√
3

· OPT k
F (c−i∗) ≥ 1

1 +
√

3
(
OPT k

F (c) − vi∗(k)
)
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The second inequality follows by the fact that OPT k
F (c−i) + vi(k) ≥ OPT k

F (c),
for all i ∈ N . By rearranging terms, we obtain

vi∗(k) ≥ 1
2 +

√
3

OPT k
F (c)

and the proof for the case follows since vi∗)(k) = V (x(c)).

2. vi∗(k) < 1
1+

√
3 · OPT k

F (c−i∗). In this case, per line 11, the allocation algorithm
of Mechanism 5.4 computes a solution x(c) such that V (x(c)) ≥ 1

2+
√

3OPT k
F (c).

Note that for the final solution x(c), we have that x(c) ̸= 0, since the while
condition evaluates to False when a single bidder is hired for a single level of
service.

Finally, we prove that Mechanism 5.4 is budget-feasible.

Lemma 5.4.3. Mechanism 5.4 is budget-feasible.

Before presenting the proof of Lemma 5.4.3, we present a series of auxiliary state-
ments, which will prove to be useful in our analysis. The purpose of these statements is
to characterise and give upper bounds on the individual payments of winning bidders,
whenever we are in the else part of the mechanism.

We begin with Lemma 5.4.4 in which we derive an upper bound on the costs of
winning bidders. Recall that ℓ is the index of the bidder with the least attractive
value-per-cost ratio in the solution output by the mechanism.

Lemma 5.4.4. Let c be a bidding profile for an instance with vi∗(k) < 1
1+

√
3OPT k

F (c−i∗).
It holds that,

cℓ ≤ 2 +
√

3
1 +

√
3

· B
mℓ(xℓ(c))
OPT k

F (c) . (5.8)

Proof. For brevity, let x := x(c) and x∗ := x∗(c). Observe that, since, vi∗(k) <
1

1+
√

3OPT k
F (c−i∗), the algorithm constructs a solution such that V (x) − mℓ(xℓ) ≤

1
2+

√
3OPT k

F (c) which implies that

OPT k
F (c) − V (x) + mℓ(xℓ) ≥ 1 +

√
3

2 +
√

3
OPT k

F (c). (5.9)

Recall, that in x∗, computed by Algorithm 5.1, there exists at most one bidder in
W (x∗) with a non-integer allocation. Denote that bidder as f . We prove Equation
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(5.8) as follows:

B ≥
∑

i∈W (x∗)
cix

∗
i ≥ cℓ(x∗

ℓ − xℓ + 1) +
∑

i∈W (x∗)\{ℓ}
ci(x∗

i − xi)

=
⌊x∗

ℓ ⌋∑
j=xℓ

cℓ

mℓ(j)mℓ(j) +
∑

i∈W (x∗)\{ℓ}

⌊x∗
i ⌋∑

j=xi+1

ci

mi(j)mi(j) + cf

mf (⌈x∗
f⌉)(x∗

f − ⌊x∗
f⌋)mf (⌈x∗

f⌉)

≥ cℓ

mℓ(xℓ)

(
⌊x∗

ℓ ⌋∑
j=xℓ

mℓ(j) +
∑

i∈W (x∗)\{ℓ}

⌊x∗
i ⌋∑

j=xi+1
mi(j) + (x∗

f − ⌊x∗
f⌋)mf (⌈x∗

f⌉)
)

= cℓ

mℓ(xℓ)
(
OPT k

F (c) − V (x) + mℓ(xℓ)
)

≥ cℓ

mℓ(xℓ)
1 +

√
3

2 +
√

3
OPT k

F (c).

The first inequality follows by the feasibility of x∗ whereas the second inequality (in
the first line) by the fact that xℓ ≥ 1. Then, the penultimate inequality is due to Fact
5.2.1 and, specifically, the marginal-value-per-cost ordering Algorithm 5.1 performs.
Finally, the last inequality is due to Equation (5.9). By rearranging terms the Lemma
follows.

Let c be a bidding profile and let i ∈ W (x(c)). For j = xi(c), xi(c) − 1, . . . , 1,
we define by pij(c−i) = sup{z ≥ ci | xi(z, c−i) = j)}, the critical cost for the j-th
level of service for bidder i, should the supremum exist. If the supremum does not
exist, we define pij(c−i) = pi(j+1)(c−i). Notice that pix(c)(c−i) is always equal to
sup{z ≥ ci | xi(z, c−i) = xi(c))} i.e., this supremum always exists since, by assumption,
ci ≤ B

k
. We now show that we can describe the payment of bidder i as the sum of

these critical payments for the levels of service she was hired for.

Observation 5.4.1. Let c be a bidding profile and let i ∈ W (x(c)). It holds that

pi(c) =
xi(c)∑
j=1

pij(c−i). (5.10)

Proof. Indeed, by Equation (5.1) we obtain that

pi(c) = cixi(c) +
∫ ∞

ci

xi(z, c−i)dz

= cixi(c) +
xi(c)−1∑

j=1

∫ pij(c−i)

pi(j+1)(c−i)

jdz +
∫ pixi(c−i)(c)

ci

xi(c)dz =
xi(c)∑
j=1

pij(c−i).
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We now proceed to obtaining an upper bound on the payments each bidder receives
for each level of service.

Lemma 5.4.5. Let c be a bidding profile such that vi∗(k) < 1
1+

√
3OPT k

F (c−i∗). More-
over, let i ∈ W (x(c)). For j = 1, . . . , xi(c), it holds that

pij(c−i) ≤ 2 +
√

3
1 +

√
3

· B
mi(j)

OPT k
F (c−i)

. (5.11)

Proof. For the sake of brevity, let ℓ′ := ℓ(x(pij(c−i), (c−i)) and pij := pij(c−i). Since pij

is a bid that guarantees bidder i at least j levels of service under the profile (pij, c−i),
it holds that

pij ≤ cℓ′mi(j)
mℓ′(xℓ′(pij, c−i))

≤ 2 +
√

3
1 +

√
3

· B
mi(j)

OPT k
F (pij, c−i)

≤ 2 +
√

3
1 +

√
3

· B
mi(j)

OPT k
F (c−i)

.

The second inequality follows by applying the inequality in Equation (5.8) for the profile
(pij, c−i), whereas the third inequality is due to the fact that OPT k

F (c) ≥ OPT k
F (c−i),

for every profile c and every bidder i ∈ N .

The final component needed for the proof of Lemma 5.4.3 is a lower bound on the
optimal fractional objective, when one bidder is excluded.

Lemma 5.4.6. Let c be a bidding profile such that vi∗(k) < 1
1+

√
3OPT k

F (c−i∗). For
every bidder i ∈ N it holds that

OPT k
F (c−i) ≥ (1 +

√
3)(V (x(c)) − mℓ(xℓ)). (5.12)

Proof. By the stopping condition of the while loop, we have:

V (x(c)) − mℓ(xℓ) ≤ 1
2 +

√
3

OPT k
F (c)

≤ 1
2 +

√
3
(
OPT k

F (c−i) + vi(k)
)

≤ OPT k
F (c−i)

2 +
√

3

Å
1 + vi∗(k)

OPT k
F (c−i∗)

ã
≤ OPT k

F (c−i)
2 +

√
3

Å
1 + 1

1 +
√

3

ã
= OPT k

F (c−i)
1 +

√
3

.

The third inequality follows by the definition of i∗, whereas the last inequality follows
directly by the assumption of the lemma.
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We can now present the proof of Lemma 5.4.3.
Proof of Lemma 5.4.3. Let c be a bidding profile. If vi∗(k) ≥ 1

1+
√

3OPT k
F (c−i∗),

bidder i∗ is the only bidder hired and she is hired for k levels of services. By Equation
(5.10), we obtain

pi∗(c) =
k∑

j=1
pi∗j(c−i∗) = kpi∗k(c)−i∗ = k

B

k
= B

The second equality, follows by the definition of the critical payments whereas the
third equality by the fact that, for this case, sup{z ≥ ci∗ | xi∗(z, c−i∗) = k)} = B

k
.

Consider now the other case, i.e., a profile c such that vi∗(k) < 1
1+

√
3OPT k

F (c−i∗).
We can upper bound the total payments made to bidders as follows:

∑
i∈W (x(c))

pi(c) = pℓ(c) +
∑

i∈W (x(c))\{ℓ}
pi(c)

=
∑

j=1,...xℓ(c)
pℓj(c−ℓ) +

∑
i∈W (x(c))\{ℓ}

∑
j=1,...,xi(c)

pij(c−i)

≤ B
2 +

√
3

1 +
√

3

Ñ
vℓ(xℓ(c))

OPT k
F (c−ℓ)

+
∑

i∈W (x(c))\{ℓ}

vi(xi(c))
OPT k

F (c−i)

é
≤ B

2 +
√

3
1 +

√
3

Ñ
vℓ(k)

OPT k
F (c−ℓ)

+
∑

i∈W (x(c))\{ℓ}

vi(xi(c))
OPT k

F (c−i)

é
≤ B

2 +
√

3
1 +

√
3

Ñ
vi∗(k)

OPT k
F (c−i∗)

+
∑

i∈W (x(c))\{ℓ}

vi(xi(c))
(1 +

√
3)(V (x(c)) − mℓ(xℓ(c)))

é
≤ B

2 +
√

3
1 +

√
3

Å 1
1 +

√
3

+ 1
1 +

√
3

ã
= B.

The second equality is due to Equation (5.10) and the inequality that follows by
applying Equation (5.11) for every bidder i ∈ W (x(c)), and every j = 1 . . . , xi(c).
Observe also that ∑xi(c)

j=1 mi(j) = vi(xi(c)). Then, the third inequality is due to
Equation (5.12) and to the definition of i∗. Finally, the last inequality is by the fact
that ∑

i∈W (x(c))\{ℓ} vi(xi(c)) = V (x(c)) − vℓ(xℓ(c)) ≤ V (x(c)) − mℓ(xℓ(c)), and by the
fact that we analyze the else case of the mechanism.

□



Chapter 6

Conclusions and Future Directions

Throughout this dissertation, we have delved into the design and analysis of algorithmic
mechanisms in both forward and reverse auction environments. Our work has tackled
classic themes in algorithmic game theory, addressing computational and incentive
concerns. In this final chapter, we provide an extended discussion of our findings,
highlight open problems for future research, and propose several modern and relatively
unexplored directions in the analysis of auctions under computational lens.

6.1 Discussion and Open Problems

6.1.1 Forward Auctions

In the first part of the thesis, we focused on the design and analysis of forward auctions.
In Chapter 2 we focused on the notion of the core in auctions whereas in Chapter 3 we
focused on the mixed and Bayes Nash equilibria of the discriminatory auction.

In Chapter 2, our findings provide insight into core-selecting and core-competitive
mechanisms, and we believe that the established properties of the core polyhedron in
Section 2.3 and the analysis of quadratic rules in Section 2.5 have broader applicability
and independent interest. However, there are still interesting avenues for further
investigation. The recent experimental evaluation of Bünz et al. (2022) has sparked
a debate on identifying the most appropriate MRCS rules. We find that the notion
of non-decreasing payment rules, defined in Section 2.5, is a suitable refinement of
MRCS rules towards this direction. It would be interesting to better understand or
even characterize which MRCS rules can satisfy this property. Moreover, the literature
on designing truthful mechanisms that are core-competitive is still scarce, and it would
be desirable to identify special cases of single-parameter domains, where better than
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O(log n)-competitiveness can be achieved, as in the Text and Image setting of Goel
et al. (2015). Generalizations to multi-parameter domains would also be enlightening
for further understanding the structure of the core constraints and their broader
applicability.

In Chapter 3, a complete characterization was performed for the mixed equilibria of
the discriminatory price auction in the case of two bidders under the uniform bidding
interface, assuming capped-additive valuations. However, for n bidders, with n > 2,
this characterization is only partial, which raises the question of obtaining a complete
characterization for this case. Recently, Jin and Lu (2022) achieved an impressive feat
by obtaining a complete characterization for the Bayes Nash equilibria of the First
Price Auction, (which can be viewed as a special case of n ≥ 2 and k = 1 in our model,
albeit for a richer class). They also established that the Price of Anarchy (PoA) for
this class of equilibria is e2

e2−1 ≈ 1.1565, and in order to improve the previously known
lower bound of Hartline (2013), they formalized a calculus of variations problem using
techniques similar to those we use in Section 3.5. This suggests that our technique
may be of wider applicability, even for unrelated combinatorial auctions environments.
In general, our work in this chapter and other emerging approaches do not rely on
the smoothness framework of Syrgkanis and Tardos (2013). Roughgarden et al. (2017)
have provided a survey of the smoothness framework’s successes and limitations in this
regard. While this framework has enabled the community to obtain many important
PoA results, some of which are tight, its usefulness may not extend to all scenarios and
it is important to understand these limitations in a principled way. It is a particularly
challenging research direction to understand whether one needs to develop a refined
framework beyond smoothness or whether a complete characterization of equilibria is
unavoidable for obtaining tight PoA results (for problems where smoothness techniques
have not been able to yield tight bounds).

6.1.2 Procurement Auctions

In the second part of this thesis, our focus was on mechanism design for procurement
auctions. In Chapter 4, we delved into a mechanism design problem with covering
constraints that has relevance for crowdsourcing applications. In Chapter 5, we extended
our focus to the design of budget-feasible auction mechanisms for two extensions of
the original model that was initiated by Singer (2010).

Regarding the cmic problem of Chapter 4, from a mechanism design viewpoint,
the most important question for future research is to design truthful mechanisms with
better approximation guarantees, as there is still a large gap between the non-truthful
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3-approximation and our truthful ∆-approximation of Section 4.3. Moreover, exploring
the approximability of well-motivated special cases of cmic, other than the restriction
on a constant number of tasks that we examined in Section 4.4, is also an intriguing
topic. In the context of crowdsourcing, some of these special cases are also meaningful
to study in a 2-dimensional model, where workers can cover circular areas of a given
radius, or other geometric shapes. Apart from positive results, we believe it is very
interesting to investigate the existence of lower bounds on the worst case performance
of polynomial time truthful mechanisms. After all, it is conceivable that there may be
a strict separation on the approximability by truthful and non-truthful algorithms, as,
e.g., for the combinatorial public project problems (Papadimitriou et al., 2008). Finally,
from a purely algorithmic viewpoint, if we set truthfulness aside, it would be quite
interesting to obtain an algorithm with a better guarantee than the 3-approximation
one due to Mondal (2018).

Finally, in Chapter 5 we studied two procurement auction settings in which the
auctioneer may hire bidders partially, and obtained novel mechanisms for both settings.
For the divisible agents setting, Mechanism 5.3 achieves a 1 +

√
2 approximation,

retrieving truthfulness and budget-feasibility. As we have already mentioned in Section
5, this mechanism improves upon the previously known state-of-the-art approximation
that the mechanism of Klumper and Schäfer (2022) achieved for the same setting.
Intriguingly, the approximation guarantee of our mechanism matches the best known
lower bound for the indivisible agents case, due to Chen et al. (2011). This means
that, we are on the verge of obtaining a separation result between the divisible
and the indivisible agents scenario: a mechanism that is truthful, budget-feasible
and has a 1 +

√
2 − ε approximation, for any small constant ε > 0, would settle

this question in the affirmative. Moreover, regarding the multiple levels of service
scenario, Mechanism 5.4 is the first constant factor approximation mechanism for this
setting. It would be interesting to understand whether we can obtain mechanisms
with approximation guarantees closer to those possible for single-level type settings,
or alternatively, determine whether allowing multiple levels of service is an inherently
harder problem. Finally, as far as simple valuation functions are concerned, the most
important open problem is still the indivisible agents case with additive valuations,
for which the approximation gap is [1 +

√
2, 3] (due to Chen et al. (2011); Gravin

et al. (2020)). Any progress on that front may give rise to novel techniques, which may
subsequently be also used for problems in richer environments.
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6.2 Avenues for Further Research

In this section, we will highlight a few contemporary directions in algorithmic mechanism
design, specifically in the context of auctions. The following three themes represent
modern areas of interest for members of the Economics and Computation community.

6.2.1 Auction Design with Predictions

Recently, there has been a growing interest in algorithms that go beyond the conven-
tional worst-case analysis paradigm. These algorithms utilize prediction information
about the input or the optimal solution’s structure to achieve better efficiency. Even
if the prediction is incorrect, the goal is to design algorithms that can still fall back
on a worst-case guarantee. This approach aims to combine accuracy (consistency),
which roughly means that the algorithm should utilize the prediction in case it is of
value, and worst-case performance guarantees (robustness) in algorithm design, as in
classical algorithms. For a survey of algorithmic results in this direction, we refer to
Mitzenmacher and Vassilvitskii (2022).

In the context of mechanism design, this approach presents additional challenges
because the input is provided by strategic agents. In a forward auction, bidders may
report lower bids to win at a lower cost and pay less. Naturally, we seek incentive-
compatible or truthful mechanisms where agents do not have an incentive to misreport
their preferences. However, in the presence of predictions, this is largely unexplored
territory.

A recent work by Xu and Lu (2022) suggests that combining improved performance
and truthfulness is achievable in learning-augmented settings, which should be applica-
ble to auction design as the authors, in fact, study such a setting. Moreover, Gkatzelis
et al. (2022) show that the quality of Nash equilibria can improve in games where
truthful reporting is not guaranteed, under the assumption that the mechanism has
access to predictions. They study a class of scheduling games and a class of network
formation games. It would be quite interesting to analyze a non-truthful auction
format, such as the setting of Chapter 3 under this prism.

6.2.2 Data-driven Auctions

The design of auctions depends on the valuation function of each bidder, which shows
their willingness to pay for different combinations of goods. Classic Bayesian auction
models assume that the auctioneer knows the probability distribution from which
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valuations are drawn. This has led to a significant amount of research on mechanisms
for revenue or social welfare maximization, among others, the celebrated theorem
of Myerson (1981), which make explicit use of the distribution in the rules of the
mechanism.

However, it is not always feasible for an auctioneer to know or approximate the
distribution of valuations, let alone use it a priori in the mechanism’s description. Thus,
there has been a growing interest in learning-based approaches for auctions. One such
approach is batch learning and data-driven models in auctions, as studied in Huang
et al. (2015) and Mohri and Medina (2014). These models assume that the auction
designer has access to data from past auctions, and a supervised learning approach is
used to estimate reserve prices for future auctions. We refer also to Roughgarden and
Wang (2019) and Derakhshan et al. (2019, 2021), for LP-based approaches regarding
the offline version of the problem.

6.2.3 Clock Auctions

A clock auction is a type of auction where the bidding starts at a low price and
gradually increases over time, hence the name “clock”. The auctioneer initiates the
auction with a low price and progressively raises it until a bidder agrees to the current
price or until a predetermined end time is reached.

In Chapter 5, we referenced the work of Balkanski et al. (2022), who introduced
a promising direction for research in designing budget-feasible mechanisms, which
is a field that has mainly consisted of sealed-bid auctions, as in this dissertation.
According to Milgrom and Segal (2020), clock auctions offer several advantages over
sealed bid auctions, such as simpler implementations that are easier to comprehend for
the bidders as well as transparency. The latter means that bidders are able to trust
that the auctioneer will handle their private information with care and adhere to the
auction protocol. Additionally, clock auctions are in most cases obviously strategyproof
(Li, 2017), meaning that bidders can easily understand that the protocol is indeed
strategyproof. Relevant works in this area include those of Dütting et al. (2017),
Gkatzelis et al. (2017), and Feldman et al. (2022).

Furthermore, from an algorithmic perspective, these auction protocols possess an
interesting feature - unlike sealed-bid auctions, they are often truthful by design. As
a result, the mechanism design problem is essentially transformed into an algorithm
design problem since there is no need to argue about truthfulness, see Milgrom and
Segal (2020).
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Considering the aforementioned factors, exploring the development of clock auction
mechanisms as an alternative to sealed-bid auctions may offer several benefits in terms
of performance and real-life implementation of protocols. As previously mentioned,
Balkanski et al. (2022) demonstrated the superiority of clock auctions over state-of-
the-art sealed-bid auctions in achieving budget-feasible mechanisms for a number of
valuation functions. It would be intriguing to investigate the performance of such
protocols in other domains, including the design of core-selecting and core-competitive
mechanisms, as well as in environments involving predictions.
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Appendix A

Missing Material from Forward
Auctions

A.1 Missing Material from Chapter 2

Proof of Proposition 2.3.1. Consider the following combinatorial auction with
6 single-minded bidders and 3 items for sale, M = {A, B, C}. For i = 1, . . . , 6 we
denote by bi(T ) the bid of i for the set of items T ⊆ {A, B, C}. Since bidders are
single-minded, each bidder declares a single bid of this form. The bids are summarized
below:

b1({A}) = 9.5
b2({B}) = 6
b3({C}) = 6

b4({A, B}) = 15
b5({A, C}) = 15
b6({B, C}) = 10

An allocation is feasible when each of the three items is assigned to a unique bidder.
For instance, bidders 1 and 4 cannot be a part of a feasible allocation. For the vector
b above, it is easy to see that the welfare-maximizing allocation algorithm assigns
{A, B, C} to bidders X∗(b) = {1, 2, 3}. Per Equation (2.6), the MRCS linear program
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with variables p1, p2, p3 is:

minimize p1 + p2 + p3

subject to p1 ≥ 9
p2 ≥ 5.5
p3 ≥ 5.5
p1 + p2 ≥ 15
p1 + p3 ≥ 15
p2 + p3 ≥ 10
p1 + p2 + p3≥ 15

Recall that each of the constraints is defined in Equation (2.3) of Section 2.2. For the
instance above, it is easy to compute the minimum revenue of the auctioneer (the value
of the objective function) by taking all the combinations of the MRCS constraints and
observing that one set of constraints that must be satisfied with equality are p2 ≥ 5.5
and p1 + p3 ≥ 15 which, combined yield that

(p1 + p3) + (p2) ≥ 20.5.

Hence, MREV(b) = 20.5.
Now suppose that bidder 1 unilaterally declares b′

i({A}) = 10 > 9.5. The optimal
allocation remains X∗(b1, p−1) = {1, 2, 3}. However, the new MRCS LP becomes:

minimize p1 + p2 + p3

subject to p1 ≥ 9
p2 ≥ 5
p3 ≥ 5
p1 + p2 ≥ 15
p1 + p3 ≥ 15
p2 + p3 ≥ 10
p1 + p2 + p3≥ 15

Once again, we consider all combinations of constraints. Observe that since this time
the VCG constraints of bidders 2 and 3 have been relaxed, the "blocking" constraints
are all greater than all or equal to 20 or strictly weaker. Hence, MREV(b′

i, b−i) = 20 <

20.5 = MREV(b) and the proof follows. Note that this example also implies that the
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core polyhedron has strictly increased (Theorem 2.3.1). For example, the solution
(p1, p2, p3) = 10, 5, 5 is now a feasible core point, whereas when bidder 1 was bidding
9.5 this was not possible. □

A.2 Missing Material from Chapter 3

Proof of Theorem 3.3.2. If z is a mass point for bidder i, then we are done by Fact
3.3.2. If not, then consider an interval I ⊆ Supp(Bi) with z ∈ I where nobody has
a mass point in it (recall that the other bidders have no mass point on z, so such I

exists). We analyze first the expected utility of a bidder i, given that she bids in I:

E
b∼B

[ui(b) | bi ∈ I] = E
bi∼Bi

[ E
b−i∼B−i

[ui(bi, b−i)] | bi ∈ I]

=
∫

z∈I
fbi|bi∈I(z) E

b−i∼B−i

[ui(z, b−i)]dz

= 1
Pr[bi ∈ I]

∫
z∈I

fi(z) E
b−i∼B−i

[ui(z, b−i)]dz (A.1)

where fi is the pdf of Bi, and fbi|bi∈I is the conditional pdf when bi ∈ I. Note that
for all z ∈ I it holds that fi(z) ≥ 0 and fi is continuous. Since no bidder has a mass
point in I, by Fact 3.3.1 and Remark 3.3.1 it holds that Eb−i∼B−i

[ui(z, b−i)] is also
continuous in I as a function of z.

We now use a standard fact from calculus, commonly referred to as the integral
version of the mean value theorem.

Fact A.2.1. Let f, g be continuous functions on [a, b] such that f is non-negative.
Then there exists a c ∈ [a, b] such that

∫ b

a
f(x)g(x)dx = g(c)

∫ b

a
f(x)dx.

Using this fact, we get that there exists ξ ∈ I, so that we can write Equation (A.1)
as

E
b∼B

[ui(b) | bi ∈ I] = E
b−i∼B−i

[ui(ξ, b−i)]
∫

z∈I fi(z)dz

Pr[bi ∈ I] = E
b−i∼B−i

[ui(ξ, b−i)]

Let u = Eb∼B[ui(b)]. By Fact 3.3.2, what we have established so far is that there
exists a ξ ∈ I for which

E
b−i∼B−i

[ui(ξ, b−i)] = u.
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Consider now making the interval I smaller and smaller, by taking a sequence
I1, I2, . . . such that in the limit, Ik collapses to z as k → ∞. By the previous arguments,
for every Ik, there exists a ξk such that Eb−i∼B−i

[ui(ξk, b−i)] = u. In the limit, ξk → z

and we obtain that Eb−i∼B−i
[ui(z, b−i)] = u. □



Appendix B

Missing Material from Chapter 4

B.1 Proof of Proposition 4.3.1

In this section we show that the algorithms of Chakaravarthy et al. (2011) (4-
approximate) and, consequently, of Mondal (2018) (3-approximate) for cmic are
not monotone. This establishes that our Algorithm 4.1 in Section 4.3 is the only
currently known monotone algorithm with bounded approximation guarantee, as we
prove in Theorem 4.3.1. To proceed, we provide first a description of the algorithms of
Chakaravarthy et al. (2011); Mondal (2018).

An ILP formulation for cmic: The problem can be described with a a rather
simple integer program. However, the algorithms we present here work with a more
involved ILP. Suppose we are given an instance (b, q, d) of cmic with b = (c, I).
Given a set S ⊆ N , the residual demand of a task j = 1, . . . , m w.r.t. S is denoted by
dj(S) = dj − ∑

i∈Nj(I)∩S qi. This is precisely the demand that remains to be covered by
workers outside of S, had we taken S as part of our solution. Moreover, for each worker
i = 1, . . . , n and each j = 1, . . . , m let qi(S, j) = min{qi, dj(S)}. We can consider now
the following ILP formulation, where the feasibility constraint says that for any task
j, and any set S, if we take any workers from N \ S in our solution, they should
collectively cover the residual demand dj(S).
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minimize
n∑

i=1
cixi

subject to
∑

i∈Nj(I)\S

qi(S, j)xi ≥ dj(S), ∀j ∈ [m], ∀S ⊆ N

xi ∈ {0, 1}, ∀i ∈ [n]

Note that for S = ∅ the related ILP constraints represent exactly the problem
of finding a feasible solution for (b, q, d). Then, for every other subset S ⊆ N , the
relevant constraints represent the residual problem to be solved assuming we have
decided that workers in S are to be included.

Primal-dual algorithm Chakaravarthy et al. (2011); Mondal (2018): The
corresponding dual of the LP-relaxation of the above ILP, with dual variables z(S, j)
for every pair of j and S, is:

maximize
∑
(S,j)

dj(S)z(S, j)

subject to
∑

(S,j):j∈[si,fi];i ̸∈S

qi(S, j)z(S, j) ≤ ci, ∀i ∈ N

z(S, j) ≥ 0, ∀S ⊆ N , ∀j ∈ [m]

The primal-dual algorithm runs in two phases: the forward phase and the delete
phase.

In the forward phase, initially no bidder is selected and S = ∅. The algorithm
iteratively constructs a feasible solution for the primal as follows: Firstly, it selects the
task j with the maximum value for dj(S). Then, it increases the dual variable z(S, j)
until some dual constraint holds with equality. Finally, the algorithm adds bidder i

whose dual-constraint became tight to S. This procedure is repeated until S becomes
a feasible solution, i.e. maxj dj(S) ≤ 0.

After the forward phase, the delete phase begins. Here, the algorithm considers
the bidders in S in the reverse order1 with which they were added to S in the forward
phase. A bidder is removed when the remaining bidders can constitute a feasible

1This is prescribed by Mondal (2018) but it is also captured by the algorithm of Chakaravarthy
et al. (2011), in which it is not being specified a particular order for deletion consideration.
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solution. Thus, the solution returned is minimal feasible.

Counterexample: To argue that the described algorithm of Chakaravarthy et al.
(2011); Mondal (2018) is not monotone, we construct an instance where one bidder is
initially selected, but after a unilateral decrease in her cost, she is removed from the
solution. Consider the following instance with 2 tasks with demands d = (4, 1) and 4
workers:

worker ci qi task 1 task 2
A 4 4 ✓ −
B 3 3 ✓ −
C 4 1 − ✓

D 4 4 ✓ ✓

The interval covered by each worker can be inferred from the last two columns, e.g.,
only worker D can cover both tasks, whereas the first three workers cover a single task
each. We also specify a deterministic, tie-breaking rule, determined by the following
three conditions:

• TB1: Task 1 is prioritized before Task 2.

• TB2: Ties between worker B and any other worker are broken in favor of B.

• TB3: If worker B has been selected in the solution, then ties between D and any
other worker are broken against worker D but if B has not been selected in the
solution, ties are broken in favor of D.

Let us now run the primal-dual algorithm. Initially, S = ∅, and let d(S) =
(d1(S), d2(S)) be the residual demand vector. Therefore, initially, d(∅) = (4, 1). The
dual constraints for S = ∅ are the following (where zj below corresponds to the dual
variable z(∅, j)):

constraint of A: 4z1 ≤ 4
constraint of B: 3z1 ≤ 3
constraint of C: z2 ≤ 4
constraint of D: 4z1 + z2 ≤ 4
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Since d1(∅) > d2(∅) we start by increasing z1 and we observe that (by using TB2),
the constraint of worker B will be the first to hold with equality. This results to adding
B to S, and now d({B}) = (1, 1). The relevant dual constraints for the remaining
workers (where zj below corresponds to z({B}, j) are now:

constraint of A: z1 ≤ 4
constraint of C: z2 ≤ 4
constraint of D: z1 + z2 ≤ 4

Using TB1, we start again increasing z1. We observe (by using TB3), that the constraint
of A will be the first to become tight which adds worker A to the solution. Now,
d({B, A}) = (−3, 1) and the dual constraints for S = {B, A} are:

constraint of C: z2 ≤ 4
constraint of D: − 3z1 + z2 ≤ 4

The only remaining uncovered task is task 2 and hence we increase variable z2. Using
once again TB3, we add C in the solution and the forward phase of the algorithm
terminates with the solution S = {B, A, C}.

The next step is to run the delete phase, which eliminates B, since worker B is
not necessary for feasibility, having C and A present. Hence, the final solution will
be {A, C}. Note that bidders C, A are considered for deletion first, but they are
indispensable to maintain feasibility and cannot be deleted.

Consider now a unilateral decrease of the cost of worker A from 4 to 4 − ϵ, for a
small ϵ > 0. Again, with S = ∅, the initial dual constraints are:

constraint of A: 4z1 ≤ 4 − ϵ

constraint of B: 3z1 ≤ 3
constraint of C: z2 ≤ 4
constraint of D: 4z1 + 1z2 ≤ 4
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This will result in the initial selection of A on the first iteration, since A is no
longer tied with B. The updated residual demands are d({A}) = (0, 1). With task 2
being the only task left to be covered, the updated constraints are:

constraint of C: z2 ≤ 4
constraint of D: z2 ≤ 4

Here, worker D will be selected (since worker B is not in the solution as per TB3) and
we obtain the solution {A, D}. This completes the forward phase.

But now, the delete phase will remove worker A since worker D, who is the first
candidate for deletion, can cover both tasks on her own. This concludes the proof,
since an initially winning bidder A has decreased her cost and this deviation resulted
in her removal. Therefore, the algorithm is not monotone.

B.2 Proof of Theorem 4.3.3

To prove the theorem, we will first introduce the relevant terminology of the local-ratio
framework in the design of approximation algorithms. For a more detailed exposition
on local-ratio algorithms, we refer the reader to Bar-Yehuda et al. (2005). Roughly
speaking, local-ratio algorithms are iterative procedures that terminate when a feasible
solution has been constructed, and at each step perform a “weight" decomposition.
At each iteration, the algorithm determines a vector of subtractions from the current
instance. A subtraction here means that certain weight parameters (typically, the ones
that contribute to the cost of the objective function) are reduced, implying that we
obtain a new instance with a lower optimal value, but at the same time, this incurs a
cost that we will account for in the final solution (determined by the amount subtracted
from the weights). The ratio between the incurred cost and the gain in the optimal
value (which is the difference between the initial optimal value and the new optimal
value in the reduced instance), is called “effectiveness” of the weight decomposition.
The approximation factor of a local-ratio algorithm depends on the effectiveness of the
proposed decomposition.

We introduce some auxiliary notation. Let z be the total number of iterations that
Algorithm 2 performs, and let S̄k be the set of remaining activities right before iteration
k begins, for k = 1, . . . , z. Note that S̄1 = J , and by slightly abusing notation, we can
view the returned feasible schedule S, as the set S̄z+1.
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It is not hard to notice that Algorithm 2 does indeed implement a local-ratio
scheme by focusing on step 6 at each iteration k = 1, . . . , z. In fact, for every activity
i = 1, . . . , n, and iteration k, step 6 can be rewritten as pi,k = w1,i(k) + w2,i(k), where

w1,i(k) =

εk min{R∗(S̄k, T, D), ri}, if i ∈ S̄k ∩ Jt∗(T),
0, o/w,

w2,i(k) = pi,k+1.

The following theorem is the adjustment for lmis, of the local-ratio Theorem for
minimization problems of Bar-Yehuda et al. (2005).

Theorem B.2.1. (implied by Bar-Yehuda et al. (2005)) Consider an instance (p, T,
r, D) of lmis and let w1, w2 be penalty vectors such that p = w1 + w2. Let S ⊆ J be
a solution that is α-approximate for the instances (w1, T, r, D) and (w2, T, r, D).
Then, S is α-approximate for (p, T, r, D).

Hence, to prove that Algorithm 2 is α-approximate we only need to satisfy the
conditions of Theorem B.2.1. To that end, it suffices to consider the first iteration,
where the input vector p is decomposed into two vectors. In fact, we establish something
stronger, regarding the decompositions in all iterations, and show that for the returned
solution S of the algorithm, the following hold at every iteration k = 1, . . . , z:

∑
j∈J \S

w1,j(k) ≤ α
∑

j∈J \OP T (w1(k))
w1,j(k) (B.1)

∑
j∈J \S

w2,j(k) ≤ α
∑

j∈J \OP T (w2(k))
w2,j(k) (B.2)

Here, S is the feasible schedule returned by Algorithm 2 and OPT (w1(k)), OPT (w2(k))
are the optimal solutions for the respective instances of the decomposition. Before
continuing, it is important to notice an important feature of this decomposition: at any
iteration k, the constant εk is such that for the index j∗ selected at iteration k, it holds
that w2,j∗(k) = 0, whereas w2,i(k) ≥ 0, for all i ≠ j∗. Furthermore, since w2,j(z) = 0
for all j ∈ J \ S, and hence the total cost of S w.r.t. w2 is zero, we trivially obtain
that S = OPT (w2(z)). This fact will be crucial for the proof of the following claim.

Claim 3. Suppose that S ⊆ J is such that Equation (B.1) holds for k = 1, . . . , z, and
some value of α. Then, for k = 1, . . . , z, Equation (B.2) holds as well.

Proof. For k = z the claim follows trivially by the discussion right before. For any job
j ∈ J \ S and any k = 1, . . . , z − 1, by the definition of the weight decomposition, we
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have that

w2,j(k) = pj,k+1 = w1,j(k + 1) + w2,j(k + 1) =
w1,j(k + 1) + w1,j(k + 2) + w2,j(k + 2) = · · · = ∑z

ℓ=k+1 w1,j(ℓ) + w2,j(z).
(B.3)

Since for j ∈ J \ S, we have w2,j(z) = 0, by summing for all jobs j in J \ S and by
our assumption that Equation (B.1) holds, we have,

∑
j∈J \S

w2,j(k) =
∑

j∈J \S

z∑
ℓ=k+1

w1,j(ℓ)

=
z∑

ℓ=k+1

∑
j∈J \S

w1,j(ℓ)

≤ α
z∑

ℓ=k+1

∑
j∈J \OP T (w1(ℓ))

w1,j(ℓ)

≤ α
∑

j∈J \OP T (w2(k))

z∑
ℓ=k+1

w1,j(ℓ)

≤ α
∑

j∈J \OP T (w2(k))
w2,j(k),

where the first equality and the last inequality are due to Equation (B.3) and the fact
that w2,j(k) ≥ 0, and the second inequality holds because OPT (w1) is optimal w.r.t.
w1, but OPT (w2) is just feasible for the instance (w1, T, r, D), (note that feasibility
is not affected by the weights).

With the above claim, it suffices to focus on proving Equation (B.1) for all k, and
for some value of α. We prove below that indeed, Equation (B.1) holds for α = ∆.

Lemma B.2.1. Let S ⊆ J be a solution of Algorithm 2 for the lmis instance
(p, T, r, D). Then, for any k,

∑
j∈J \S

w1,j(k) ≤ ∆ ·
∑

j∈J \OP T (w1(k))
w1,j(k)

Proof. Let R∗
k = R∗(S̄k, T, D) and let t∗ be the time instant considered at iteration

k. By the definition of w1,j(k), and the fact that the number of jobs, whose interval
contains t∗, are at most ∆, we have:

∑
j∈J \S

w1,j(k) =
∑

j∈(J \S)∩(S̄k∩Jt∗ (I))
εk min{R∗

k, rj} ≤ ∆εkR∗
k.
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To complete the proof, we need to show the following:

∑
j∈J \OP T (w1(k))

w1,j(k) ≥ εkR∗
k. (B.4)

For brevity, let OPT (w1(k)) = OPT1. Observe that, since OPT1 is a feasible solution
it holds that ∑

j∈Jt∗ (T)∩OP T1 rj ≤ Dt∗ , or equivalently, that

∑
j∈S̄k∩Jt∗ (T)

rj −
∑

j∈Jt∗ (T)∩OP T1

rj ≥
∑

j∈S̄k∩Jt∗ (T)
rj − Dt∗ = R∗

k,

and since (S̄k ∩ Jt∗(T)) \ (Jt∗(T) ∩ OPT1) = (S̄k ∩ Jt∗(T)) \ OPT1, this is equivalent
to ∑

j∈(S̄k∩Jt∗ (T))\OP T1

rj ≥ R∗
k. (B.5)

Now to prove that Equation B.4 holds, we have

∑
j∈J \OP T (w1(k))

w1,j(k) =
∑

j∈(S̄k∩Jt∗ (T))\OP T1

εk min{R∗
k, rj}

= εk

Ü
∑

j∈(S̄k∩Jt∗ (T))\OP T1
s.t. rj≤R∗

k

rj +
∑

j∈(S̄k∩Jt∗ (T))\OP T1
s.t. rj>R∗

k

R∗
k

ê
.

When there is a job j ∈ J with rj > R∗
k in (S̄k ∩ Jt∗(T)) \ OPT1, the claim follows.

When no such job exists, we use Equation (B.5) to complete the proof.

Tightness of the approximation ratio: Consider the lmis instance with n jobs of
unit width, namely {1, 2, . . . , n}, to be scheduled on a machine active on n time-instants,
namely {t1, t2, . . . , tn}. Throughout the example, we assume ties break lexicographically.
At time instant ti, the amount of available resource is n − i, except for instant tn,
where it is 1 − ϵ, for some ϵ ∈ (0, 1). Let the interval in which job i is active be
Ti = {1, . . . , ti} for i = 1, 2 . . . , n. The penalties of the jobs are given by the vector p
such that pi = 1 − y(n − i + 1) for i = 1, 2 . . . , n, and we fix y = 2

(n+1)(n2−2n+2) . Observe
that ∆ = n.
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The optimal solution is to schedule all jobs except jn at a cost of 1 − y =

1 − 2
(n + 1)(n2 − 2n + 2) = (n + 1)(n2 − 2n + 2) − 2

(n + 1)(n2 − 2n + 2) = n2(n − 1)
(n + 1)(n2 − 2n + 2)

The first iteration of Algorithm 2 will select t∗ = t1, due to the tie-breaking rule,
since R∗ = max

i=1,...,n−1
{Ri} = max{1, . . . , 1} = 1. Then, it will reduce the cost of all jobs

by ε1, where ε1 is defined as the unique quantity that makes the penalty of the first
job (which has the lowest penalty) to drop down to zero (in which case it equals p1),
after the update in step 6 of the algorithm. Hence the first job will be removed from
the schedule. The current solution remains infeasible, and continuing analogously, in
the second iteration, time instant t2 will be selected and the second job will be the
one to be removed. It is easy to verify that the current solution will remain infeasible
after every iteration, and Algorithm 2 will gradually remove from the schedule all jobs.
Hence, the output of the algorithm is an empty schedule, which is feasible, and the
solution cost equals the sum of all job penalties, which is:

n∑
i=1

[1 − y(n − i + 1)] = n − yn2 − yn + y
n∑

i=1
i = n − yn(n + 1)

2 = n(n − 1)2

n2 − 2n + 2 .

But then, the ratio between the solution cost and the optimal cost is (n−1)(n+1)
n

=
n − 1

n
, which approaches ∆ as n grows larger.

B.3 Proof of Proposition 4.4.1

The authors in Chen et al. (2019) study a problem that can be seen as a generalization
of the Min-Knapsack problem and in our model corresponds to the case of having a
single task. It is claimed that Algorithm 3 in Chen et al. (2019) is monotone, based on
the framework of Briest et al. (2011) and leads to a truthful FPTAS. In this section we
show that this was not a correct application of the technique by Briest et al. (2011),
and their algorithm is in fact non-monotone.

For the precise statement of the algorithm, we refer to Chen et al. (2019). We
provide here a brief overview, adapted to our notation, and we focus on the special
case of their problem that corresponds to Min-Knapsack. Their algorithm is similar
in spirit to our Algorithm AF P T AS in Section 4.4, which in turn uses the algorithms
Ak (described by Algorithm 4.4). The differences with our work for each algorithm Ak,
are as follows:
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• The set Lk(c) is defined as: Lk(c) = {i ∈ N : ci ≤ 2k},

• the parameter ak is defined as: ak = ϵ2k

n+1 ,

• the rounding is different, namely, c̄i = ⌊ ci

ak
⌋.

Most importantly, the for loop in their algorithm AF P T AS is examining the algorithms
Ak only for k = 1, . . . , log cmax(b). This is a crucial point as the number of iterations
do not suffice for monotonicity (in contrast to the number of iterations that we use in
Section 4.4, which is equal to log (ncmax(b)/ϵ + 1). We note that it is not specified in
Chen et al. (2019) if log cmax(b) is rounded to its floor or ceiling. Hence we are going
to consider both cases. We will prove that for each case there exists an instance in
which the decrease of the cost of a winning worker could result in her exclusion from
the final solution.
Case 1. Say that AF P T AS runs algorithm Ak for k = 1, . . . , ⌈log cmax(b)⌉. We fix
ϵ = 0.097 and we create an instance with a single task of demand 1, and 3 workers,
namely A, B and C, the costs and the qualities of which are shown in the following
table:

i ci qi

A 2.01 1
B 1.01 0.5
C 1.01 0.5

Note that maximum cost is slightly above 2, and hence ⌈log cmax⌉ = 2. Thus,
the number of algorithms that are going to be executed by AF P T AS equals 2. Both
algorithms A1 and A2 compute a scaling factor a1 and a2 respectively. Their values for
the selected ϵ and since n = 3, are a1 = 0.0485, a2 = 0.097. The rounded cost c̄i

(k) of
element i concerning algorithm Ak is shown below (c̄i

(k) = ⌊ci/ak⌋, (this is denoted as
c′

i in their work).
i c̄i

(1) c̄i
(2) qi

A 41 20 1
B 20 10 0.5
C 20 10 0.5

It is now easy to see that A1 will return elements B and C having a total cost of
2.02, since element A will not be examined by the algorithm due to its high cost. On
the other hand, A2 will return the solution {A}, of total cost 2.01 and thus AF P T AS will
return {A}, given that it is the solution of minimum cost computed by the executed
algorithms.

Let us now examine what will happen if agent A declares a lower cost, in particular,
suppose he reports a cost of 2 instead of 2.01. We claim that such a decision will leave
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A outside of the solution. In that case, just a single algorithm A1 (for k = 1) will be
executed by AF P T AS since ⌈log 2⌉ = 1. We observe that the scaled cost of element A

will not change after that deviation (since ⌊ 2
a1

⌋ = ⌊2.01
a1

⌋), and of course the scaled costs
of the remaining elements will remain the same as well. Thus, element A will not be
in the solution of AF P T AS this time because 40 = 2⌊1.01

a1
⌋ < ⌊ 2

a1
⌋ = 41 and thus A1 will

return {B, C} once again. Hence, by lowering his cost, A stopped being a winner.
Case 2. Say that AF P T AS runs algorithm Ak for k = 1, . . . , ⌊log cmax(b)⌋. We create
an instance with a single task of unit demand, and n workers, whose costs and qualities
are shown below:

worker cost q1
A 4 1
B1 1 1

n−1
... ... ...

Bn−1 1 1
n−1

It is easy to see that exactly 2 algorithms will be evaluated from AF P T AS. In A1,
all workers except A will be considered and hence the only feasible solution is to select
them all. In A2, worker A will also be considered. In that algorithm a2 = 4ϵ

n+1 and
c̄i = ⌊ ci(n+1)

ϵ
⌋. The dynamic programming procedure runs optimally for the rounded

costs and hence it will produce the feasible solution {A}, the cost of which is less than
the cost of the solution returned by A1. Thus, AF P T AS will return A as a single winner.

Suppose now that A is changing her cost to 4−ϵ. That negligible deviation will have
a significant impact on the number of algorithms that will be called by AF P T AS since
⌊log cmax(b)⌋ = 1. Given that cmax(b) < 21, worker A will again not be considered
in A1, by the definition of Lk(c) and hence, the only feasible solution is to select all
workers but A. This means that A will no longer be part of the solution returned by
AF P T AS.

We have concluded that the FPTAS by Chen et al. (2019) is not monotone as
claimed.

B.4 Handling the case of cmin(b) < 1
We remind the reader that in Section 4.4 we assumed that ci ≥ 1 for all i ∈ N .
Essentially, one of the reasons to do that is to be able to use Lemma 4.4.1 for k = 0
(our lowest index) and this requires that, for a bidding profile b, OPT (b) ≥ 1. The
second reason is to enforce that cmax(b) ≥ 1, which means that the number of iterations
performed by AFPTAS, is well-defined. These two conditions suffice in order to be able
to run AFPTAS and have the desired guarantee.
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Claim 4. For a bidding profile b, if cmax(b) ≥ 1, and OPT(b) ≥ 1, then we can run
AFPTAS(b) and retain all the properties established in Section 4.4.

Hence, the assumption that ci ≥ 1 for every i ∈ N helps us enforce what we need
in the above claim. In this subsection, we present a way to adjust the assumption to:
ci ≥ δ for all i ∈ N for any arbitrary value δ such that 1 > δ > 0.

Given a δ > 0, we will first provide a reduction from an instance of cmic with
ci ≥ δ for all i ∈ N to an instance with OPT(b) ≥ 1 and cmax(b) ≥ 1, and then we
will argue that this is without any loss in the approximation factor.

Suppose that we want to solve an instance of cmic I = (b, q, d), with n workers
and m tasks such that ci ≥ δ. Obviously, if it also holds that ci ≥ 1 for every i, we just
run AFPTAS. If not, we suggest running AFPTAS for an instance I ′ of n + 1 workers (the
n workers of I and an extra dummy worker say x), and m + 1 tasks (the m tasks of I

and an extra dummy task say m + 1, so that we have the interval from 1 to m + 1). In
this modified instance, the dummy worker x is only interested in contributing to task
m + 1, and at the same time no other worker is interested in contributing to m + 1.
Let both the contribution of x and the demand of m + 1 be equal to 1. Let also the
cost of the new worker be equal to 1, whereas the workers and the tasks of I, remain
exactly the same in I ′.

Notice that in the instance I ′ it necessarily holds that cmax ≥ 1, no matter what
the initial bidding profile in I is. Also, every optimal solution of the new instance I ′

has a cost that is greater than 1 since x must be included in every feasible solution and
her cost is 1. Therefore, AFPTAS for I ′ can run without a problem, since the conditions
of Claim 4 are satisfied. Furthermore, due to the monotonicity of AFPTAS, we can easily
verify that the new algorithm is also monotone. At what concerns the approximation
ratio we claim that we can still obtain a (1 + ϵ)-approximation, if we run AFPTAS(b, ϵ′)
for ϵ′ = ϵδ/(δ + 1). By doing so, if SOL(I ′) is the solution returned for I ′, and SOL(I)
is the solution we get by removing the dummy worker, we obtain

SOL(I) + 1 = SOL(I ′) ≤ (1 + ϵ′)OPT (I ′) =
(1 + ϵ′)(OPT (I) + 1) = (1 + ϵ′)OPT (I) + 1 + ϵ′,

where the inequality is due to the fact that AFPTAS is a FPTAS. By rearranging
terms we continue as follows:
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SOL(I) ≤ (1 + ϵ′)OPT (I) + ϵ′ = (1 + ϵ′)OPT (I) + δϵ′

δ

≤ (1 + ϵ′)OPT (I) + ϵ′

δ
OPT (I) = (1 + ϵ)OPT (I)

Here, the last inequality holds since δ ≤ cmin ≤ OPT (I). With this transformation,
the resulting algorithm is once again an FPTAS. Crucially, the monotonicity is not
destroyed since the value we use in AFPTAS for ϵ′ does not in any way depend on the
profile b, since no bidder can affect it by any unilateral deviation.




	Contents
	1 Introduction
	1.1 Structure of Dissertation and Main Themes
	1.2 Publications

	2 Core-selecting Auctions
	2.1 Introduction
	2.1.1 Related Work

	2.2 Definitions and Preliminaries
	2.2.1 Single-Parameter Domains and Mechanisms
	2.2.2 Welfare Maximization and VCG Payments
	2.2.3 Core-selecting Payment Rules
	2.2.4 Core-competitive Mechanisms

	2.3 Insights on the Geometry of the Core
	2.3.1 Warm up: Pareto-efficiency and Individual Rationality within the Core
	2.3.2 The Effects of Unilateral Deviations on the Core
	2.3.3 A Comment on Revenue Monotonicity of MRCS

	2.4 An O(log(n))-core-competitive Mechanism
	2.4.1 Remarks on Tightness, Complexity and Other Implications
	2.4.2 Feasibility and Monotonicity of hat(X)
	2.4.3 Payments and Revenue Guarantee

	2.5 A Class of Non-decreasing Quadratic Payment Rules
	2.5.1 Quadratic Payment Rules
	2.5.2 A Class of Non-Decreasing Quadratic Payment Rules


	3 The Discriminatory Price Auction: Equilibria and Inefficiency
	3.1 Introduction
	3.1.1 Contribution
	3.1.2 Related Work

	3.2 Notation and Definitions
	3.3 Towards a Characterization of Inefficient Mixed Equilibria
	3.3.1 Mixed Nash Equilibria with Demand Revelation
	3.3.2 Existence of Non-empty-handed Bidders
	3.3.3 The support and the CDFs of Mixed Nash Equilibria

	3.4 Price of Anarchy for mixed equilibria
	3.4.1 The case of two bidders
	3.4.2 Multiple Bidders

	3.5 A Separation between Mixed and Bayesian Cases

	4 Interval Cover
	4.1 Introduction
	4.2 Preliminaries
	4.3 An Improved Truthful Mechanism
	4.4 A Truthful FPTAS for a Small Number of Tasks
	4.4.1 A Pseudopolynomial Dynamic Programming Algorithm
	4.4.2 The FPTAS

	4.5 Generalization to Non-Interval Structures

	5 Budget-feasible Mechanisms for Divisible Agents and Multiple Levels of Service
	5.1 Introduction
	5.1.1 Related Work

	5.2 Model and Preliminaries
	5.2.1 Divisible Agents
	5.2.2 Multiple Levels of Service

	5.3 A Truthful and Budget-Feasible Mechanism for Divisible Agents
	5.3.1 A Pruning Algorithm for Divisible Agents
	5.3.2 An Adaptive Posted-price Mechanism

	5.4 A Truthful and Budget-Feasible Mechanism for Multiple Levels of Service

	6 Conclusions and Future Directions
	6.1 Discussion and Open Problems
	6.1.1 Forward Auctions
	6.1.2 Procurement Auctions

	6.2 Avenues for Further Research
	6.2.1 Auction Design with Predictions
	6.2.2 Data-driven Auctions
	6.2.3 Clock Auctions


	Bibliography
	Appendix A Missing Material from Forward Auctions
	A.1 Missing Material from Chapter 2
	A.2 Missing Material from Chapter 3

	Appendix B Missing Material from Chapter 4
	B.1 Proof of Proposition 4.3.1
	B.2 Proof of Theorem 4.3.3
	B.3 Proof of Proposition 4.4.1
	B.4 Handling the case of cmin(b) < 1


