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Abstract
We revisit the inefficiency of the uniform price auction, one of the standard multi-
unit auction formats, for allocating multiple units of a single good. In the uniform
price auction, each bidder submits a sequence of non-increasing marginal bids, for
each additional unit, i.e., a submodular curve. The per unit price is then set to be the
highest losing bid. We focus on the pure Nash equilibria of such auctions, for bidders
with submodular valuation functions. Our result is a tight upper and lower bound
on the inefficiency of equilibria, showing that the Price of Anarchy is bounded by
2.1885. This resolves one of the open questions posed in previous works on multi-
unit auctions. We also discuss implications of our bounds for an alternative, more
practical form of the auction, employing a “uniform bidding” interface.

1 Introduction

Multi-unit auctions form a popular tool for selling multiple identical units of a single
good. They have been in use for a long time, with important applications, such as
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the auctions offerred by the U.S. and U.K. Treasuries for selling bonds to investors.
They are also being deployed in various platforms, including several online brokers
[14, 15]. In the literature, multi-unit auctions have been a subject of study ever since
the seminal work of Vickrey [20], and some formats were conceived even earlier, by
Friedman [9].

We study the inefficiency of pure Nash equilibria of the uniform price auction,
one of the standard multi-unit auction formats (see e.g. chapter 12 in [12]), for bid-
ders with submodular valuation functions. In the canonical form of such an auction
with k units, each bidder is required to submit a sequence of non-increasing bids,
one for each additional unit, that is, a submodular curve. Among all submitted bids,
the k highest win the auction and each bidder receives as many units of the good as
the number of his winning bids. The highest losing bid is then chosen as the uni-
form price that each bidder pays per unit. A more practically relevant form of the
auction employs a uniform bidding interface, which requires that each bidder sub-
mits a single per-unit bid, along with an upper bound on the number of units that
this bid applies for. Note that this bidding interface is less expressive than the stan-
dard one described above, in that it essentially restricts the bidders’ declarations to
“capped-linear” curves, while their valuation functions can be submodular.

The simplicity of the uniform price auction is counterbalanced by the fact that it
does not support truthful bidding in dominant strategies, thus encouraging strategic
behavior. Even further, the underlying strategic game induced by the auction is prone
to a demand reduction effect discussed in [1], where bidders may have incentives to
understate their demand, so as to receive fewer units of the single good at a lower
price per unit. This motivates the quantification of the inefficiency at equilibrium,
via upper and lower bounds on the Price of Anarchy, which has been the subject of
recent works [5, 7, 13, 19]. The outcomes of these works are quite encouraging, as
they establish that the inefficiency is bounded by a small constant, under either full
or incomplete information for the valuation functions. However, tight bounds for the
Price of Anarchy are known only for a strict subset of pure Nash equilibria [13]. The
results of [7] show that for pure Nash equilibria, the Price of Anarchy is bounded
between 2 − 1

k
and 3.1462.

Contribution We focus on the pure Nash equilibria of the uniform price auction, for
bidders with submodular valuation functions. Our results are tight upper and lower
bounds on the inefficiency of pure equilibria, showing that the Price of Anarchy is
bounded by 2.1885 for submodular bidders. This resolves one of the questions left
open from [7, 13].

As was the case in these works and in much of the related work, our results concern
pure Nash equilibrium profiles wherein no bidder outbids his actual value for any
number of units (it is well known that without this condition, there exist equilibria
that involve overbidding and have unbounded inefficiency, even for the single item
second price auction). However, in contrast to the analysis presented in [7, 13], we
do not restrict the bidders’ strategy spaces to such “no-overbidding” strategies; that
is, strategy profiles involving overbidding are perfectly valid for the game induced by
the auction. Interestingly, we use such a potentially overbidding strategy explicitly
in upper bounding the Price of Anarchy of no-overbidding pure equilibria. We argue
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formally in Section 2 that, for submodular bidders, all pure Nash equilibria of the
game considered in [7, 13] survive in the game with unrestricted strategy spaces
that we study here. The converse holds trivially as well, thus, the two versions of
the game admit exactly the same set of no-overbidding equilibria. The proof of the
upper bound on the Price of Anarchy in Section 3, is based on carefully analyzing the
performance of (no-overbidding) pure equilibria with respect to bidders who receive
fewer units than in the optimal assignment. Finally, in Section 3.1, we discuss the
case of the simplified uniform bidding interface. An argument already discussed in
[7] (extended version), makes our upper bound valid for no-overbidding equilibria of
the auction under uniform bidding as well. However, we also provide a simple proof
of an improved upper bound of 2, for uniform bidding with only 2 bidders.

Our lower bound in Section 4 applies for the standard bidding interface and is
obtained by an explicit construction, involving 2 bidders with appropriately designed
valuation functions, and a carefully chosen equilibrium profile. This equilibrium
exhibits Price of Anarchy that approaches our upper bound of 2.1885, as the number
of units on sale becomes large enough. Hence, this implies a clear separation of the
performance of the two bidding interfaces for the case of 2 bidders, which is, perhaps
surprisingly, in favor of the—less expressive—uniform bidding. This begs further
study of upper bounds for the latter, towards determining whether this performance
separation stands for more than 2 bidders.

1.1 RelatedWork

The uniform price auction is known to possess pure Nash equilibria, and a polyno-
mial time algorithm for computing such an equilibrium is developed and analyzed
in [13]. A tight bound of e/(e − 1) was obtained in [13], for the Price of Anarchy
of pure equilibria in undominated strategies; these equilibria form a strict subset of
all possible no-overbidding pure Nash equilibrium profiles. Indicatively, the auction
always admits a welfare-optimal pure equilibrium, as described in [13], which lies
outside this subset. For the full set of pure no-overbidding equilibria, the results of de
Keijzer et al. in [7] imply that, with k units on sale, the Price of Anarchy is bounded
between 2 − 1

k
and 3.1462. Both of these bounds were shown in [7] to hold for the

uniform bidding interface as well. The lower bound in particular is based on a pure
equilibrium profile for the standard bidding interface, which consists of uniform bids
(cf. Theorem 1 in the extended version of [7]). The upper bound was shown for the
standard bidding interface, but is valid under uniform bidding as well, by virtue of a
simple argument stating that, every pure equilibrium profile under uniform bidding is
also an equilibrium profile under standard bidding. For completeness, we comment
briefly on this argument in Section 3.1, as it renders our bound of 2.1885 valid also
for the uniform bidding interface.

The social inefficiency of the uniform price auction has also been studied within
the more general context of incomplete information. The upper bound of 3.1462 was
shown in [7] to hold for mixed Bayes-Nash equilibria of the uniform price auction,
in the incomplete information setting. This bound improved upon previously derived
upper bounds of 4 from [13] and 4e/(e − 1) from [19]. However, it is still not known
whether this is tight for mixed Bayes-Nash equilibria. In [7], an upper bound of 4
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is also obtained for the mixed Bayes-Nash Price of Anarchy, when the bidders have
subadditive valuation functions, which form a strict superclass of submodular ones.
This upper bound is derived by an appropriate adaptation of a technique introduced
by Feldman et al. in [8] and is valid for the standard bidding interface. For the uniform
bidding interface and bidders with subadditive valuation functions, an upper bound of
6.2924 is obtained, via approximating the values of subadditive valuation functions
by uniform bids.

The uniform price auction constitutes an item bidding format, where each bidder
casts a separate bid for each item (here: additional unit) he wishes to obtain. Another
such multi-unit format is the discriminatory auction, studied in [5, 7]. The Price of
Anarchy of item bidding formats has been studied extensively under full and incom-
plete information, particularly in the context of combinatorial auctions, implemented
as simultaneous item bidding compositions of simple first or second price auctions.
This line of research was initiated by Christodoulou, Kovács and Schapira in [4] and
followed up by several other works, including e.g., [2, 5, 8, 10, 16, 19]. Roughgar-
den in [16, 17] and Syrgkanis and Tardos in [19] developed a smoothness technique
that can be used for deriving upper bounds on the Price of Anarchy of simultane-
ous and sequential item bidding compositions of certain types of auctions. We refer
the interested reader to [18], for a comprehensive survey of the relevant techniques
and results. Overall, the outcomes of all these works highlight that several simple
and practical mechanisms perform extremely well with respect to the social welfare
attained at equilibrium.

2 Definitions and Preliminaries

We consider a multi-unit auction, involving the allocation of k units of a single item,
to a setN of n bidders,N = {1, . . . , n}. Each bidder i ∈ N has a private symmetric
valuation function vi : {0, 1, . . . , k} �→ R

+, defined over the quantity of units that
he receives, with vi(0) = 0. In this work, we assume that each function vi is a
non-decreasing submodular function.

Definition 1 A valuation function f : {0, 1, . . . , k} �→ R
+ is called submodular if

for every x < y, f (x) − f (x − 1) � f (y) − f (y − 1).

A valuation function can also be specified through a sequence of marginal values,
corresponding to the value that each additional unit yields for the bidder. For the j -th
additional unit, the bidder obtains marginal value vi(j)−vi(j −1), which we denote
by mij . Then, the function vi can be determined by the vector mi = (mi1, . . . , mik).
For submodular functions, mi1 � · · · � mik , by definition. We will often use the
representation of vi bymi in the sequel.

The following proposition describes well known properties of submodular func-
tions, and for the sake of completeness, we also provide their proof.

Proposition 1 Given x, y ∈ {0, 1, . . . , k} with x � y, any non-decreasing sub-
modular function f , with f (0) = 0, satisfies yf (x) � xf (y). Moreover, when
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x < y, for any j = 1, . . . , y − x, the function f satisfies: (f (x + j) − f (x))/j �
(f (y) − f (x))/(y − x).

Proof Consider x, y ∈ {0, 1, . . . , k} with y � x. When x = 0, the first statement of
the proposition holds, for a non-decreasing submodular function f with f (0) = 0,
because yf (x) = xf (y) = 0. When x � 1, we can express xf (y) as follows, by
using the marginal values of f :

xf (y) = x

⎛
⎝f (x) +

y∑
�=x+1

m�

⎞
⎠ = xf (x) + x

y∑
�=x+1

m�

� xf (x) + x(y − x)mx � xf (x) + (y − x)x
f (x)

x
= yf (x)

The first inequality above is due to the non-increasing marginal values, i.e., thatmx �
m�, for � = x + 1, . . . , y. The second inequality is justified by the fact that mx � m�

for all � = 1, . . . , x, thus, mx � f (x)/x, which is the average of these marginal
values.

For the second statement of the proposition, consider y > x and j = 1, . . . , y −
x. Define the function g(j) = f (x + j) − f (x), over {1, . . . , y − x}. Using the
fact that f is submodular non-decreasing, it can be straightforwardly verified that
g is submodular non-decreasing as well, by Definition 1. Then it satisfies the first
statement of the proposition, i.e., (y−x)g(j) � jg(y−x), for any j = 1, . . . , y−x,
which is precisely the statement we wanted to prove.

The standard uniform price auction requires that bidders submit their non-inc-
reasing marginal value for each additional unit; every bidder i is required to declare
his valuation curve, as a bid vector bi = (bi1, bi2, . . . , bik), satisfying bi1 � bi2 �
· · · � bik . Thus, bij is the declared marginal value of i, for obtaining the j -th
unit of the item, if he has already obtained j − 1 units. We sometimes refer to the
bids bij as the marginal bids of i. Note that each bij may differ from the bidder’s
actual marginal value, mij . Given a bidding profile b = (b1, . . . ,bn), the auction
allocates the k units to the k highest marginal bids. We denote this allocation by
x(b) = (x1(b), x2(b), . . . , xn(b)), where xi(b) is the number of units allocated to
bidder i. Each bidder pays a uniform price p(b) per received unit, which equals
the highest rejected marginal bid, i.e., the (k + 1)-th highest marginal bid. The total
payment of bidder i then equals xi(b) · p(b), and his utility for the allocation is:
ui(b) = vi(xi(b)) − xi(b) · p(b).

The (utilitarian) social welfare achieved by the auction under a bidding profile b is
defined as the sum of utilities of all interacting parties, inclusively of the auctioneer’s
revenue. This sum equals the sum of the bidders’ values for their allocations:

SW(b) =
n∑

i=1

vi(xi(b))

We will also denote by SW(x) the social welfare produced by an allocation x =
(x1, . . . , xn), of the units to the players. Our goal is to derive upper and lower bounds
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on the Price of Anarchy (PoA) [11] of pure Nash equilibria of the uniform price
auction. This is the worst-case ratio of the optimal welfare, over the welfare achieved
at a pure Nash equilibrium. If x∗ denotes an optimal allocation, then

PoA = sup
b

SW(x∗)
SW(b)

where the supremum is taken over pure equilibrium profiles.
Following previous works on equilibrium analysis of auctions, e.g., [2, 4, 13], we

focus on no-overbidding equilibrium profiles b, wherein no bidder ever outbids his
value, for any number of units. That is, if b = (b1, . . . ,bn) is an equilibrium, then for
any bidder i, and for any � � k, we assume

∑�
j=1 bij � vi(�). Note that, this does

not necessarily imply bij � mij , except for when j = 1: i.e., bi1 � mi1 = vi(1).
We also stress that, in contrast to previous works, we do not restrict the bidders’
strategy spaces to no-overbidding strategies. Still, for submodular valuation func-
tions, a pure Nash equilibrium profile b of the game restricted to no-overbidding
strategies is also a pure Nash equilibrium for the game with unrestricted strategies.
Indeed, towards deriving a contradiction, assume that for an equilibrium b of the
restricted game, there is a bidder i and an overbidding deviation strategy b′

i such that
ui(b′) > ui(b) � 0, where b′ ≡ (b′

i , b−i ). Then, vi(xi(b′)) > xi(b′)p(b′), which
implies the existence of an equivalent deviation to b′

i , having the first xi(b′) marginal
bids equal to vi(xi(b′))/xi(b′) > p(b′) and the remaining ones equal to 0 (note that
xi(b′) > 0 since we assumed that b′

i is a profitable deviation); this strategy also wins
exactly xi(b′) units when the other bidders stick to b−i , since all the non-zero bids
of bidder i are higher than the previous price p(b′). By the submodularity of vi , this
new strategy satisfies no-overbidding1—a contradiction to b being an equilibrium for
the no-overbidding game.

In proving our upper bound on the Price of Anarchy of no-overbidding pure Nash
equilibrium profiles b, we assume that the bids of every bidder i in any such equi-
librium profile b sum up to his value, vi(xi(b)). This assumption does not harm
generality, as shown below.2

Proposition 2 Let b denote a no-overbidding pure Nash equilibrium profile of the
uniform price auction. There exists a (no-overbidding) pure Nash equilibrium profile
b′ such that, for every bidder i, xi(b′) = xi(b) and:

1. b′
ij = 0, for j � xi(b′) + 1,

2.
∑k

j=1 b′
ij = vi(xi(b′)).

Proof First we show how to transform b into a no-overbidding equilibrium profile
b0 satisfying, for every bidder i: xi(b0) = xi(b) and b0ij = 0, for j � xi(b0)+1. For

1By Proposition 1, for every � � xi(b′): � · (vi (xi (b′))/xi(b′)) � vi(�).
2The fact that this assumption can be made without loss of generality is instrumental in the proof of
Lemma 3, which lies at the heart of our proof for the upper bound. Although we implicitly made this same
assumption in our preliminary conference proceedings version of this work [3], a formal statement of this
was omitted.
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any bidder i under b, each of his “non-winning” marginal bids bij , j � xi(b) + 1,
cannot exceed the uniform price under b, i.e., bij � p(b). We produce b0 by lower-
ing all these marginal bids down to 0 for all the bidders. This modification reduces
the uniform price to p(b0) = 0 and increases the winning bidders’ utilities. Then,
clearly, no winning bidder has an incentive to “drop” any of his won units. More-
over, if any bidder i deviates—say, through a strategy b̄i—towards obtaining more
than xi(b0) = xi(b) units, the uniform price will necessarily increase, to at least
the value of the smallest winning marginal bid under b0; this equals the small-
est winning marginal bid under b. The deviating bidder’s utility will then become
ui(b̄i , b0−i ) = ui(b̄i , b−i ) � ui(b) � ui(b0). Thus, b0 is a pure Nash equilibrium
and satisfies the first of the stated properties.

Let us now describe a procedure that transforms an equilibrium profile b satisfying
the first property, into a profile b′ satisfying the second stated property as well. Begin
by setting b′ = b. Subsequently, for every winning bidder i with xi(b′) � 1, adjust
his marginal bids bij iteratively, for j = 1, . . . , xi(b′), by increasing b′

ij to:

b′
ij + max

⎧⎨
⎩0, min

⎧⎨
⎩mij − b′

ij , vi(xi(b′)) −
xi (b)∑
j=1

b′
ij

⎫⎬
⎭

⎫⎬
⎭

Consider for example a bidder i with valuation function vi = (2, 1, 0, . . . , 0), bid-
ding bi = (1.5, 1.5, 0, . . . , 0) in some equilibrium profile b, and obtaining xi(b) = 2
units. The procedure outlined above initializes b′

i = bi ; in the first iteration, it com-
putes min{mi1 − b′

i1, vi(2) − b′
i1 − b′

i2} = min{0.5, 0} = 0. Thus, b′
i1 remains

unchanged and equal to 1.5. In the second iteration, we have min{mi2 − b′
i2, vi(2) −

b′
i1 − b′

i2} = min{−0.5, 0} = −0.5. Thus, b′
i2 also remains unchanged and equal to

1.5. For the same valuation function and bidding vector bi = (1.6, 0.8, 0, . . . , 0) it
can be verified that the procedure outputs b′

i = (2, 1, 0, . . . , 0); similarly, for a bid-
ding vector bi = (1.4, 1.1, 0, . . . , 0) it outputs b′

i = (1.9, 1.1, 0, . . . , 0). Notice that
all the input and output vectors satisfy no-overbidding.

This transformation increases each of the winning marginal bids of each winning
bidder as much as possible, but not higher than the bidder’s corresponding marginal
value, by “consuming” iteratively the remaining difference between his value for the
number of the received units, xi(b′) = xi(b), and the current sum of his bids. The
uniform price remains unchanged, i.e., p(b′) = p(b) = 0, implying ui(b′) = ui(b),
for every bidder i. Thus, no winning bidder has an incentive to “drop” any units won
under b′. Moreover, no other bidder has an incentive to deviate—say, through a strat-
egy b̄i—towards obtaining more units, as the prospective uniform price p(b̄i , b′−i )

will equal a winning marginal bid under b′, thus, will be at least equal to p(b̄i , b−i )

implying ui(b̄i , b′−i ) � ui(b̄i , b−i ) � ui(b) = ui(b′).

3 Inefficiency Upper Bound

In this section we develop tight welfare guarantees for no-overbidding pure Nash
equilibrium profiles of the uniform price auction, when the bidders have submodular
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valuation functions. We also provide upper bounds for the simplified uniform bidding
interface of this auction. By the results of [7], it is already known that for submodular
valuation functions on k units, 2 − 1

k
� PoA � 3.146. We show that:

Theorem 1 The Price of Anarchy of no-overbidding pure Nash equilibria of the
uniform price auction with submodular bidders is at most:

2 + W0(−e−2)

1 + W0(−e−2)
≈ 2.1885

where W0 is the first branch of the Lambert W function.

The Lambert W function is the multi-valued inverse function of f (W) = WeW ;
we refer the reader to [6] for an informative exposition of its definition, properties
and applications.

Let b denote a no-overbidding profile. For the remainder of the analysis in this
section, we focus without loss of generality on pure equilibria that result after
applying Proposition 2. We denote the winning (marginal) bids under b by βj (b),
j = 1, . . . , k, so that βj (b) is the j -th lowest winning bid under b, thus, β1(b) �
β2(b) � · · · � βk(b). For a profile of valuation functions (v1, v2, . . . , vn), we denote
the socially optimal—i.e., welfare maximizing—allocation by x∗ = (x∗

1 , . . . , x
∗
n). If

there are multiple such allocations, we fix one for the remainder of the analysis. Given
x∗ and any other arbitrary allocation x, we define a partition of the set of bidders,N ,
into two subsets, O and U , as follows:

N = O ∪ U , O = {i ∈ N : xi � x∗
i }, U = {i ∈ N : xi < x∗

i }.

The set O contains the “overwinners”, i.e., bidders who receive in x at least as many
units as in x∗. The set U contains respectively the “underwinners”. In our analysis,
the allocations we refer to are determined by some profile b, i.e., x ≡ x(b). Conse-
quently, the sets O and U will depend on b; for simplicity, we omit this dependence
from our notation. The following lemma states that, under a no-overbidding profile
b, every bidder i ∈ O retains value at least equal to a convex combination of her
socially optimal value, vi(x

∗
i ), and of the sum of her winning bids.

Lemma 1 Let b be a no-overbidding bidding profile, and let O be the set of over-
winners with respect to the allocation x(b). Then, for every λ ∈ [0, 1], and for every
bidder i ∈ O:

vi(xi(b)) � λ · vi(x
∗
i ) + (1 − λ) ·

xi (b)∑
j=1

bij (1)
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Proof Indeed, by definition of O:

vi(xi(b)) = λvi(xi(b)) + (1 − λ)vi(xi(b)) � λvi(x
∗
i ) + (1 − λ)vi(xi(b))

Then, (1) follows by our no-overbidding assumption on b.

By definition, each overwinner is capable of “covering” her socially optimal value.
Conversely, the underwinners are the cause of social inefficiency. We will bound the
total inefficiency by transforming the leftover fractions of winning bids of bidders in
O, i.e., the term (1 − λ) · ∑xi (b)

j=1 bij for each bidder i ∈ O in (1), into fractions of
the value attained by bidders in U in the optimal allocation. In this manner, we will
quantify the value that the underwinners are missing (due to their strategic bidding),
and determine the worst-case scenario that can arise at a pure Nash equilibrium.
The following claim can be inferred from [13], and will be used to facilitate this
transformation. We present the proof for completeness.

Claim 1 Let b be any bidding profile. Then it holds that:

∑
i∈U

x∗
i −xi (b)∑
j=1

βj (b) �
∑
i∈O

xi (b)∑
j=x∗

i +1

bij . (2)

Proof For every unit missed under b by any bidder i ∈ U (with respect to the units
won by i in the optimal allocation), there must exist some bidder � ∈ O that obtains
this unit. If i missed x∗

i − xi(b) > 0 units under b, there are at least as many bids
issued by bidders in O who obtained collectively these units. The sum of these bids

cannot be less than the sum
∑x∗

i −xi (b)

j=1 βj (b) of the x∗
i − xi(b) lowest winning bids

in b. Hence, summing over every i ∈ U yields the desired inequality.

Next, we develop a characterization of upper bounds on the Price of Anarchy. To
this end, let us first define the following set, �(b), for any bidding profile b.

�(b)=
⎧⎨
⎩λ ∈ [0, 1] : vi(xi(b)) + (1 − λ)

x∗
i −xi (b)∑
j=1

βj (b) � λvi(x
∗
i ), ∀i ∈ U

⎫⎬
⎭ (3)

Notice that, for every b, �(b) �= ∅, because λ = 0 ∈ �(b). The following simple
lemma helps us understand how one can obtain upper bounds on the Price of Anarchy.

Lemma 2 If there exists λ ∈ [0, 1] such that λ ∈ �(b), for every no-overbidding
pure Nash equilibrium profile b of the uniform price auction, then the Price of
Anarchy of no-overbidding pure Nash equilibria is at most λ−1.
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Proof Fix a no-overbidding pure Nash equilibrium profile b and consider any λ ∈
�(b). Then, we can apply consecutively the partitionN = O ∪ U with respect to b,
Lemma 1, Claim 1, and finally, the definition of �(b), to obtain:

SW(b) =
∑
i∈O

vi(xi(b)) +
∑
i∈U

vi(xi(b))

� λ
∑
i∈O

vi(x
∗
i ) + (1 − λ)

∑
i∈O

xi (b)∑
j=x∗

i +1

bij +
∑
i∈U

vi(xi(b))

� λ
∑
i∈O

vi(x
∗
i ) +

∑
i∈U

⎛
⎝(1 − λ)

x∗
i −xi (b)∑
j=1

βj (b) + vi(xi(b))

⎞
⎠

� λ
∑
i∈O

vi(x
∗
i ) +

∑
i∈U

λ · vi(x
∗
i ) = λ · SW(x∗)

Using λ = 0 with Lemma 2, yields the trivial upper bound of ∞. To obtain better
upper bounds, Lemma 2 shows that we need to understand better the sets �(b), and
whether underwinners can extract at equilibrium a good fraction of their value under
the optimal assignment. By the definition of these sets, the next step towards this is
to derive lower bounds on every β�(b) for each underwinner i ∈ U , and every value
� = 1, . . . , x∗

i −xi(b). The lower bound that we will use is formally expressed below.

Lemma 3 Let b be a pure Nash equilibrium of the uniform price auction, and let x∗
be a socially optimal allocation. For every underwinning bidder i ∈ U under b and
for every � = 1, · · · , x∗

i − xi(b):

β�(b) � 1

xi(b) + �
· (vi(xi(b) + �) − vi(xi(b))) (4)

For completeness, we note that (4) was also derived and used in [13] (cf. proof of
Theorem 2), for a narrower class of pure Nash equilibria and under the restriction
of no-overbidding on the bidders’ strategy spaces; its proof here differs significantly.
We defer the proof of Lemma 3, in order to explain first how it—along with Lemma
2—leads to the proof of Theorem 1.

Proof of Theorem 1 In order to apply Lemma 2, we identify values of λ that belong
to every set �(b), induced by a no-overbidding pure Nash equilibrium profile b. Fix
any such no-overbidding pure Nash equilibrium profile b and, for every bidder i ∈ U ,
let qi(b) = x∗

i − xi(b). To simplify the notation, we use hereafter xi for xi(b), p for
p(b), qi for qi(b), and βj for βj (b), (always with respect to the no-overbidding pure
Nash equilibrium b).
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For every λ ∈ [0, 1] and every i ∈ U , define hi(λ) = vi(xi) + (1 − λ) · ∑qi

j=1 βj .
We can now have the following implications.

hi(λ) = vi(xi) + (1 − λ) ·
qi∑

j=1

βj

� vi(xi) + (1 − λ) ·
qi∑

j=1

1

j + xi

· (vi(xi + j) − vi(xi)) (5)

= vi(xi) + (1 − λ) ·
qi∑

j=1

(
j

j + xi

· vi(xi + j) − vi(xi)

j

)

� vi(xi) + (1 − λ) · vi(x
∗
i ) − vi(xi)

x∗
i − xi

·
qi∑

j=1

j

j + xi

. (6)

In the derivation above, inequality (5) follows by applying (4) from Lemma 3, for
every βj , j = 1, . . . , qi . Inequality (6) follows by application of the second statement

of Proposition 1, which yields vi (xi+j)−vi (xi )
j

� vi (x
∗
i )−vi (xi )

x∗
i −xi

, for any j = 1, . . . , qi .

Suppose now that under the equilibrium b, there exists i ∈ U such that xi = 0.
In order for some λ to belong to �(b), we would need to have hi(λ) � λvi(x

∗
i ).

Using (6), for the underwinners with xi = 0, and substituting vi(xi) = 0, we obtain:
hi(λ) � (1 − λ)vi(x

∗
i ). For any λ � 1/2, it is true that (1 − λ)vi(x

∗
i ) � λvi(x

∗
i ).

Thus, any value of λ in [0, 1/2] satisfies the constraint in the definition of �(b) for
bidders in U with xi = 0. It remains to consider the more interesting case, which is
of bidders in U with xi > 0. We continue from (6) to bound hi(λ) for those bidders
as follows:

hi(λ) � λvi(xi) + (1 − λ) ·
⎛
⎝vi(xi) + vi(x

∗
i ) − vi(xi)

x∗
i − xi

·
qi∑

j=1

j

j + xi

⎞
⎠

� λ · vi(xi) + (1 − λ) ·
⎛
⎝

x∗
i∑

j=xi+1

mij

⎞
⎠ ·

⎛
⎝1 + xi

x∗
i − xi

·
⎛
⎝1 −

qi∑
j=1

1

j + xi

⎞
⎠

⎞
⎠

� λ · vi(xi) + (1 − λ) ·
⎛
⎝

x∗
i∑

j=xi+1

mij

⎞
⎠ ·

(
1 + xi

x∗
i − xi

·
(
1 −

∫ x∗
i

xi

1

z
dz

))

� λ · vi(xi) + (1 − λ) ·
⎛
⎝

x∗
i∑

j=xi+1

mij

⎞
⎠ ·

(
1 + xi

x∗
i − xi

·
(
1 + ln

xi

x∗
i

))

= λ · vi(xi) + (1 − λ) ·
⎛
⎝

x∗
i∑

j=xi+1

mij

⎞
⎠ ·

(
1 +

xi

x∗
i

1 − xi

x∗
i

·
(
1 + ln

xi

x∗
i

))
(7)
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The second inequality follows from the fact that vi(xi) � xi

x∗
i −xi

· ∑x∗
i

j=xi+1 mij ,

which is an implication of the first statement of Proposition 1. Note also that∑x∗
i

j=xi+1 mij = vi(x
∗
i ) − vi(xi). We have bounded the sum of harmonic terms by

using
∑n

k=m f (k) �
∫ n

m−1 f (x)dx, which holds for any monotonically decreasing
positive function.

Having (7), we minimize the function f (y) = 1 + y
1−y

· (1 + ln y) over (0, 1),
since xi/x

∗
i belongs to this interval. Note that f is continuous and differentiable in

(0, 1), with derivative f ′(y) = −y+ln y+2
(1−y)2

. In the interval (0, 1), we have f ′(y) =
0 when −y + ln y + 2 = 0 or, equivalently, when −ye−y = −e−2. This yields
y = −W0(−e−2), where W0 is the first branch of the Lambert W function. It can
be verified that f is also convex in (0, 1), by examination of the sign of f ′′ around
−W0(−e−2); to conclude, f is minimized at y0 = −W0(−e−2) and then, 1+ln y0 =
y0 − 1, which yields f (y0) = 1 − y0.

By substituting in (7), we obtain a new lower bound on hi(λ) for every bidder
i ∈ U with xi > 0 as follows:

hi(λ) � λ · vi(xi) + (1 − λ) ·
⎛
⎝

x∗
i∑

j=xi+1

mij

⎞
⎠ ·

(
1 + W0(−e−2)

)

We can now obtain candidate values of λ that belong to �(b), if we set the right
hand side of the above to be greater than or equal to λvi(x

∗
i ). In particular, we notice

that by using λ∗ = (1 + W0(−e−2))/(2 + W0(−e−2)) ≈ 0.457, we have that
hi(λ

∗) � λ∗vi(x
∗
i )3 for every bidder i ∈ U with xi > 0. Since for bidders with

xi = 0, we found earlier that λ � 1/2 suffices, and since λ∗ < 1/2, we conclude that
λ∗ ∈ �(b). Hence, the theorem follows by Lemma 2.

To complete our analysis, we provide the proof of Lemma 3.

Proof of Lemma 3 Let b denote a no-overbidding pure Nash equilibrium profile b
and p(b) be the uniform price under b. We assume that b satisfies the two properties
outlined in Proposition 2. Fix now any underwinning bidder i ∈ U . We examine a
particular unilateral deviation of i from b, towards obtaining � additional units, for
� = 1, . . . , x∗

i − xi(b). Given �, define r = max{ j � xi(b) : mij > β�(b) } and
consider the following deviation b′

i for i:

b′
i = (mi1, · · · , mir︸ ︷︷ ︸

r bids

, β�(b) + ε, β�(b) + ε, . . . , β�(b) + ε︸ ︷︷ ︸
xi (b)+�−r bids

, 0, 0, . . . , 0)

The first part of b′
i consists of all r � xi(b) highest marginal values of i, that are

higher than β�(b), i.e., the �-th lowest winning bid in b. Thus, either r = xi(b), or
r < xi(b) and mi,r+1 � β�(b). These r marginal values are followed by xi(b)−r +�

bids equal to β�(b) + ε, where ε > 0 is any arbitrarily small constant, no larger than
mir − β�(b). We examine the cases r = xi(b) and r < xi(b) separately.

3The following holds: λ∗ ·vi(xi (b))+(1−λ∗) ·
(∑x∗

i

j=xi+1 mij

)
·(1 + W0(−e−2)

) = 1+W0(−e−2)

2+W0(−e−2)
·vi(x

∗
i ).
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Case 1: r = xi(b). First, we claim that the bidding vector b′
i grants bidder i

exactly xi(b′
i , b−i ) = xi(b) + � units in total, under the profile (b′

i , b−i ). If this is
not the case, it is implied that at least one of the marginal bids β1(b), . . . , β�(b)

under b belongs to bidder i (otherwise, all the xi(b)+ � non-zero marginal bids of
bidder i in b′

i would be winning bids). Then, however, since r = xi(b) and mir >

β�(b) � · · · � β1(b), and b is a no-overbidding equilibrium, we conclude that
vi(xi(b)) >

∑xi (b)
j=1 bij . This contradicts our assumption that b satisfies property

2 of Proposition 2.
Moreover, if r = xi(b), the uniform price under the profile (b′

i , b−i ) equals
exactly β�(b), which becomes the highest losing bid (issued by some other bidder
in the auction). Note that b′

i may constitute overbidding for i, but it is a legitimate
action in our setting. Since b is a pure Nash equilibrium, the utility of the bidder
at (b′

i , b−i ) cannot be higher than the utility obtained by the bidder at b, i.e.:

vi(xi(b) + �) − (xi(b) + �) · β�(b) � vi(xi(b)) − xi(b) · p(b)

By dropping the non-negative term xi(b) ·p(b) and solving for β�(b), we obtain (4).
Case 2: r < xi(b). In this case the bidding vector b′

i definitely constitutes over-
bidding for i, since mi,r+1 � β�(b) < β�(b) + ε; by the submodularity of the
valuation function, mij < β�(b) + ε for j � r + 1, thus:

vi(xi(b) + �) =
r∑

j=1

mij +
xi (b)+�∑
j=r+1

mij

<

r∑
j=1

mij + (xi(b) + � − r) · (β�(b) + ε)

�
xi (b)∑
j=1

mij + (xi(b) + �) · (β�(b) + ε)

= vi(xi(b)) + (xi(b) + �) · (β�(b) + ε)

By rearranging, we obtain:

β�(b) >
1

� + xi(b)
· (vi(xi(b) + �) − vi(xi(b))) − ε.

Observe that the above inequality holds for any arbitrarily small constant ε > 0.
Thus, inequality (4) follows and the proof is concluded.

3.1 Uniform Bidding

We comment here on the uniform price auction with a uniform bidding interface. In
this form of the auction, each bidder i submits a single per-unit bid bi , along with an
upper bound qi on the number of units that his bid applies for. This can be simulated
by a bidding vector bi , composed of qi initial marginal bids equal to bi , that are
followed by k − qi zeros.
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Lemma 1 of [7] (extended version) states that every pure Nash equilibrium profile
of the auction under the uniform bidding interface remains a pure Nash equilibrium
under the standard bidding interface. The argument is similar to the one we used
in Section 2 for claiming that every (no-overbidding) pure Nash equilibrium b of
the auction with no-overbidding strategies remains equilibrium for the auction with
overbidding allowed (before the statement of Proposition 2). It suffices to assume
additionally that the profile b consists of uniform bids and that, for some bidder
i, there exists a deviation strategy b′

i—which may involve overbidding, but is not
restricted to consist of uniform bids—such that ui(b′

i , b−i ) > ui(b). As we argued in
Section 2, we end up with a no-overbidding uniform bidding strategy that is utility-
wise equivalent to b′

i for i, a contradiction to b being an equilibrium with uniform
bids for the game with no-overbidding strategies. This, along with our Theorem 1,
implies:

Corollary 1 The Price of Anarchy of no-overbidding pure Nash equilibria of the
uniform price auction for submodular bidders under the uniform bidding interface is
at most (2 + W0(e

−2))/(1 + W0(e
−2)) ≈ 2.1885.

Interestingly, for 2 bidders only, we can improve on the upper bound of Corollary 1:

Proposition 3 The Price of Anarchy of pure Nash equilibria of the uniform price
auction under the uniform bidding interface is at most 2, for 2 submodular bidders.

Proof Under a pure Nash equilibrium profile b, let bidder i be the underwinner and
bidder j �= i be the overwinner. To simplify the notation, we use xi ≡ xi(b) and
xj ≡ xj (b). Accordingly, we use x∗

i and x∗
j for the bidders’ allocations in the socially

optimal outcome. Since j is the overwinner, xj � x∗
j and xj � x∗

i − xi . Consider a
deviation b′

i of bidder i:

b′
i = (vi(x

∗
i )/x∗

i , . . . , vi(x
∗
i )/x∗

i︸ ︷︷ ︸
x∗
i marginal bids

, 0, . . . , 0),

towards obtaining x∗
i − xi � xj additional units, that are held by bidder j under

b. First notice that the uniform bid of j under b cannot be larger than vj (xj )/xj ,
because of our assumption of no-overbidding; thus, the uniform price p(b′

i , bj ) is no
larger than vj (xj )/xj as well. Assume for now that vi(x

∗
i )/x∗

i > vj (xj )/xj , thus, i
definitely obtains exactly x∗

i units under (b′
i , bj ). Since b is a pure Nash equilibrium:

ui(b′
i , bj ) � ui(b) � vi(xi), thus:

vi(x
∗
i ) � vi(xi) + x∗

i · p(b′
i , bj ) � vi(xi) + x∗

i · (vj (xj )/xj )

By solving for vj (xj ), we obtain:

vj (xj ) �
xj · (vi(x

∗
i ) − vi(xi))

x∗
i

�
(x∗

i − xi) · (vi(x
∗
i ) − vi(xi))

x∗
i

(8)
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On the other hand, if vj (xj )/xj � vi(x
∗
i )/x∗

i , then vj (xj ) � (xj /x
∗
i )vi(x

∗
i ) �

(xj /x
∗
i )(vi(x

∗
i ) − vi(xi)) and (8) remains valid. By the submodularity and the

monotonicity of vi , we also have:

vi(xi) �
xi

x∗
i

vi(x
∗
i ) � xi

x∗
i

vi(x
∗
i − xi) �

xi

x∗
i

(vi(x
∗
i ) − vi(xi)) (9)

Summing inequalities (8) and (9) yields: vi(xi) + vj (xj ) � vi(x
∗
i ) − vi(xi). To this

latter inequality, we add vj (xj ) � vj (x
∗
j ) and vi(xi) in both sides, to obtain the stated

result.

4 AMatching Lower Bound

We now present a lower bound construction for the standard bidding interface,
establishing that our upper bound is tight, even for two bidders.

Theorem 2 For any k � 8, the Price of Anarchy of pure Nash equilibria of the
uniform price auction with submodular bidders is at least:

1 + (1 − 1
k
)(1 + W0(−e−2))

1
k−1 + 1 + (−W0(−e−2)(1 − 1

k
)) ln(−W0(−e−2) + 1

k
)

and approaches (2 + W0(−e−2))/(1 + W0(−e−2)) ≈ 2.1885 as k grows.

Proof We construct an instance of the Uniform Price Auction with two bidders and
k � 8 units. Let x ∈ {1, 2, . . . , k − 2} be a parameter that we will set later on. The
valuation function of bidder 1 assigns value only for the first unit, which equals:

m11 = k − 1 − x

k − 1
+

k−1−x∑
i=1

i

x + i

For the remaining units, we have m1j = 0, for every j � 2. The valuation function
of bidder 2 is given by the following marginal values:

m2j =
{
1, 1 � j � k − 1
0, j = k

Hence, the optimal allocation is for bidder 1 to obtain only 1 unit and for bidder 2
to obtain k − 1 units. We will now construct an equilibrium profile, where bidder 1
will end up winning much more than just a single unit, forcing bidder 2 to a lower
total value, and resulting in a suboptimal allocation. To do this, we need to distribute
the actual value m11 that bidder 1 has for the first unit, across several units with
appropriate marginal bids. This should be done in such a way, so that bidder 2 will
not have an incentive to change her strategy so as to obtain more units.
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Based on these thoughts, we consider the following bidding profile b = (b1, b2):

b1j =
⎧⎨
⎩
1 − x

k−1 , j = 1
1 − x

k−j+1 , j = 2, . . . , k − x

0, otherwise
and b2j =

{
ε, j = 1, . . . , x
0, j > x

Here, ε > 0 can be any arbitrarily small positive quantity, no larger than 1.
Let us illustrate for k = 11, that this construction yields a better lower bound than

the previously known bound of 2− 1
k
of [7]. By setting x = 2, we obtain the following

instantiation of the defined valuation functions and bidding vectors:

m1 =
(
7487

1260
, 0, 0, . . . , 0, 0, 0

)
, b1 =

(
8

10
,
8

10
,
7

9
,
6

8
,
5

7
, . . . ,

1

3
, 0, 0

)

m2 = (1, 1, . . . , 1, 1, 0), b2 = (ε, ε, 0, 0, . . . , 0, 0)

It can be verified that this profile already yields a lower bound of 2+ 12
1645 on the Price

of Anarchy. Coming back to the analysis for general k and x, we will first ensure that
both bidding vectors b1, b2 adhere to no-overbidding. For the vector b1, it suffices to
note that

k−x∑
j=1

b1j = k − 1 − x

k − 1
+

k−x∑
j=2

k − j + 1 − x

k − j + 1
= k − 1 − x

k − 1
+

k−1−x∑
i=1

i

x + i
= m11

where the last equality holds by changing indices and setting i = k − j + 1 − x.
Therefore, we have that

∑k−x
j=1 b1j = v1(k−x). And this implies directly that, for any

� < k − x, we have
∑�

j=1 b1j < v1(�). It is also straightforward that, for � > k − x,
the no-overbidding assumption cannot be violated. Similarly, for the vector b2, it is
easy to check that it complies to no-overbidding.

Under b, bidder 1 obtains k − x units and bidder 2 obtains x units. Notice that in
this profile the uniform price is 0, as there is no contest for any unit; bidder 1 bids for
exactly k − x units, while bidder 2 bids for x units. All other bids are 0.

We now argue that b is a pure Nash equilibrium, under the assumption that when-
ever there is a tie in a deviation from b, bidder 1 always gets the unit in question.
Bidder 1 clearly has no incentive to deviate. She is interested only in the first unit,
and there is no incentive to win more units for her. Note also that she cannot lose the
first unit (even if she bids a zero vector) due to the tie breaking rule.

Let us examine the case of bidder 2. Since bidder 2 is not interested in the last
unit, we can consider only deviation vectors b′

2 with b′
2k = 0. Note that under b,

u2(b) = x. Hence, bidder 2 does not have an incentive to try to obtain less than x

units, since the price will then still remain 0, and she will only have lower utility.
It therefore suffices to consider what happens when she tries to obtain � additional
units, where � = 1, . . . , k−x−1. To do so, bidder 2 must outbid some of the winning
bids of b1. In particular, to obtain � additional units at the minimum possible price,
she must outbid the bid b1t of bidder 1, where t is the index t = k − x − (� − 1).
If she issues a bid b′

2, where the first x + � coordinates outbid b1t and the remaining
bids are 0, then she will obtain exactly x + � units, and the new price (i.e., the new
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highest losing bid) will be precisely b1t . However, any such attempt will grant bidder
2 utility equal to u2(b), since

u2(b1, b′
2) = v(x + �) − (x + �) · b1t

= x + � − (x + �) · (1 − x

x + �
) = x = u2(b).

We conclude that the profile b is a pure Nash equilibrium. The ratio of the optimal
social welfare to the one in b is at least:

SW(x∗)
SW(b)

= v1(1) + v2(k − 1)

v1(k − x) + v2(x)

= 1 + k − 1 − x

k−1−x
k−1 + ∑k−1−x

i=1
i

x+i
+ x

= 1 + k − 1 − x

k−1−x
k−1 + k − 1 − x

∑k−1
i=x+1

1
i

� 1 + k − 1 − x

k−1−x
k−1 + k − 1 − x

∫ k

x+1
1
y
dy

� 1 + k − 1 − x

k−1−x
k−1 + k − 1 − x ln k

x+1

(10)

At this point we set x = �−W0(−e−2)(̇k − 1)�, where W0 is the first branch of the
Lambert W function. To continue from (10), we will need to ensure that −W0(−e−2)

(k − 1) − 1 > 0, which holds for k � 8. Continuing from (10), we have:

SW(x∗)
SW(b)

� 1+ k − 1 − �−W0(−e−2)(k − 1)�
k−1−�−W0(−e−2)(k−1)�

k−1 + k−1−�−W0(−e−2)(k−1)� ln k

�−W0(−e−2)(k−1)�+1

� 1+ k − 1 − (−W0(−e−2)(k − 1))
k−(−W0(−e−2)(k−1))

k−1 + k−1−(−W0(−e−2)(k−1) −1) ln k

−W0(−e−2)(k−1)+1

� 1+ k − 1 − (−W0(−e−2)(k − 1))
k

k−1 + k − (−W0(−e−2)(k − 1)) ln k

−W0(−e−2)k+1

= 1+ (1 − 1
k
)(1 + W0(−e−2))

1
k−1 + 1 − (−W0(−e−2)(1 − 1

k
)) ln( 1

−W0(−e−2)+ 1
k

)

= 1+ (1 − 1
k
)(1 + W0(−e−2))

1
k−1 + 1 + (−W0(−e−2)(1 − 1

k
)) ln(−W0(−e−2) + 1

k
)
. (11)

The first inequality is inferred using the well-known bounds of �y�, namely that
y � �y� � y −1 for any y � 0. Moreover, notice that (−W0(−e−2)(k−1)−1) > 0
since k � 8.

Let f (k) be the right-hand side of (11). The theorem then follows by observing
that:

lim
k→∞ f (k) = 1 + 1 + W0(−e−2)

1 − W0(−e−2) · ln(−W0(−e−2))
= 2 + W0(−e−2)

1 + W0(−e−2)
,

where the last equality is derived by using the property that ln(−W0(y)) =
−W0(y) + ln(−y) for y ∈ [−e−1, 0), see [6].
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5 Conclusions

We have presented a tight bound on the Price of Anarchy of pure Nash equilibria
of the uniform price auction, for bidders with submodular valuation functions. Our
results, together with the previous works on this topic exhibit that although such
mechanisms are not truthful, they achieve good performance guarantees in terms of
social welfare. This justifies and motivates their use in practical scenarios.

Regarding future research, we noted that our upper bound is also valid for the uni-
form bidding interface, where each bidder submits a single per-unit bid and an upper
bound on the maximum number of units he wishes to receive. However, for the case
of uniform bidding with 2 bidders, we showed a slightly better upper bound of 2;
this, in combination with our lower bound of 2.1885 for 2 bidders under the stan-
dard bidding interface, yields a separation of the performance of the two formats for
2 bidders, that motivates further investigation of uniform bidding for more bidders.
In addition to this, there are several even more intriguing open questions in multi-
unit auctions. First, it is not clear to us if our proof can be recast into the smoothness
framework of [16, 19]. Second, when moving beyond submodular valuation func-
tions, to the superclass of subadditive functions, the known bounds are not tight. It
still remains elusive to produce lower bounds tailored for subadditive functions, and
the best known upper bound is 4 [7]. Finally, a major open problem is to tighten the
known gaps for the set of Bayes-Nash equilibria.
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