Georgios Amanatidis ${ }^{1,7}$, Sophie Klumper ${ }^{2,3}$, Evangelos Markakis ${ }^{4,5,7}$, Guido Schäferer, ${ }^{2,6}$, Artem Tsikiridis ${ }^{2}$ $\begin{array}{ll}\text { 1. University of Essex } & \text { 2. Centrum Wiskunde \& Informatica (CWI) }\end{array}$
 3. Vrije Universiteit Amsterdam 4. Athens University of Economics and Business
 5. Input/Output Global 6. University of Amsterdam 7. Archimedes (Athena Research Center)

Budget Feasible Procurement Auctions

An auctioneer with a budget $B>0$ is
looking to hire a subset of n strategic agents.

Question [Singer '10]: Who should the auctioneer hire and how much should he pay (keeping in mind his budget B)?

Multiple Levels of Service Model (MLoS):

Agents can offer k levels of service.

Question (this work): What hiring scheme should the auctioneer implement and how much should he pay (keeping in mind his budget B)?

Formally:
An auctioneer with a budget B and a set of agents $N=$ $\{1, \ldots, n\}$ with k levels of service.

For each $i \in \mathrm{~N}$, a private cost parameter $c_{i} \geq 0$.
Bidders can be hired for some levels of service (e.g., we can think of a service having premium versions).

A mechanism $M=(\boldsymbol{x}, \boldsymbol{p})$ consists of:

1. An allocation algorithm that takes as input a vector $\mathbf{c}=\left(c_{i}\right)_{i \in N}$ of costs and outputs an allocation $\mathbf{x}(\boldsymbol{c}) \in$ $\{0, \ldots, k\}^{n}$.
2. A payment rule that determines the payments $\boldsymbol{p}(\boldsymbol{c}) \in$ $\mathbb{R}_{\geq 0}^{n}$ of the auctioneer.

- For each $i \in N$, there is a non-decreasing concave value function $v_{i}:\{0,1, \ldots, k\} \mapsto \mathbb{R}_{\geq 0}$.
- The total value of the auctioneer is $V(\boldsymbol{x}(\boldsymbol{c})):=$ $\sum_{i=1}^{n} v_{i}\left(x_{i}(\boldsymbol{c})\right)$.
- For each $i \in N$ we assume that $c_{i} k \leq B$ (each bidder can be hired entirely on their own).

Truthful Budget Feasible Mechanisms for MLoS

The non-strategic optimal solution $O P T_{I}^{k}(\boldsymbol{c})$:
Design Objectives for $M=(\boldsymbol{x}, \boldsymbol{p})$

Budget-feasibility: A payment rule should satisfy that $\forall c$

$$
\sum_{i=1}^{n} p_{i}(\boldsymbol{c}) \leq B
$$

Individual Rationality: Bidders should be incentivized to participate, i.e., $\forall c$ and all $i \in N$

$$
p_{i}(\boldsymbol{c}) \geq x_{i}(\boldsymbol{c}) c_{i}
$$

Truthfulness: Bidders have no incentives to lie about their costs.

Primary Goal of the Auctioneer: Find an $\alpha-$ approximate mechanism for the smallest α possible.

Truthful Mechanism Design for Single-parameter Domains
Definition: An allocation algorithm \boldsymbol{x} is monotone if for every profile \boldsymbol{c}, every bidder $i \in N$ and every $c_{i}^{\prime} \leq c_{i}$ it holds that $x_{i}\left(c_{i}^{\prime}, \boldsymbol{c}_{-i}\right) \geq x_{i}(\boldsymbol{c})$.

Myerson's Characterization: In a single parameter domain, a mechanism $M=(\boldsymbol{x}, \boldsymbol{p})$ is truthful and individually rational if and only if

1) x is monotone
2) $p_{i}(\boldsymbol{c})=c_{i} x_{i}(\boldsymbol{c})+\int_{c_{i}}^{\infty} x_{i}\left(y, \boldsymbol{c}_{-i}\right) d y, \forall i \in N$.

A Mechanism for Multiple Levels of Service

Input: A profile \boldsymbol{c} and parameters α, β.

1. Let $i^{*}=\operatorname{argmax}_{i \in N} \frac{v_{i}(k)}{O P T_{F}^{k}\left(c_{-i}\right)} . \quad O P T_{F}^{k}(\boldsymbol{c})$ is the fractional relaxation of $O P T_{I}^{k}(\boldsymbol{c})$.
2. If $v_{i^{*}}(k) \geq \beta O P T_{F}^{k}\left(\boldsymbol{c}_{-i^{*}}\right)$, then set $x_{i^{*}}=k$ and $x_{i}=0$ for all $i \neq i^{*}$.
3. Else:
4. Solve $O P T_{F}^{k}(\boldsymbol{c})$ and call its allocation $\boldsymbol{x}^{*}->$ A list of decreasing marginal rates of the form (marginal value)/ cost.
5. Initialize \boldsymbol{x} to be the integral part of \boldsymbol{x}^{*}.
6. Keep removing the last element from the list and decrementing x until $\sum_{i=1}^{n} v_{i}\left(x_{i}\right) \geq \alpha O P T_{F}^{k}(\boldsymbol{c})$ holds minimally.
7. Return \mathbf{x} and set $\mathbf{p}(\boldsymbol{c})$ according to Myerson.

Theorem 1: There exist constants a, β for which the mechanism is individually rational, truthful, budget-feasible and $(2+\sqrt{3})$-approximate.

Natural Connection with the Divisible-Agents Scenario: Each agent $i \in N$ can be hired fractionally (e.g., think of hiring them for a fraction of their time).
For each $i \in N$, there is a non-decreasing and concave function $\bar{v}_{i}:[0,1] \mapsto \mathbb{R}_{\geq 0}$.
\diamond L-regularity: For $L \geq 1$, a function $\bar{v}:[0,1] \mapsto \mathbb{R}_{\geq 0}$ is L-regular Lipschitz if $\bar{v}(x) \leq x L \bar{v}(1)$.
\diamond The above mechanism can used as a dicretization procedure for this problem, i.e., as $k \mapsto \infty$, we approach the divisible setting.
Theorem 2: There is a mechanism for Divisible Agents that is individually-rational, truthful, budget-feasible and $L(\phi+1)$-approximate.
The Linear $(L=1)$ Case: The guarantee becomes $\phi+1$, matching the state-of-the-art mechanism of [Klumper \& Schäfer '22] for the divisible-agents scenario. But we can do slightly better!

References

[1] Singer, Y.: Budget Feasible Mechanisms. FOCS 2010
[2] Klumper, S., Schäfer, G.: Budget Feasible Mechanisms for Procurement Auctions with Divisible Agents. SAGT 2022
[3] Chen, N., Gravin, N., Lu, P.: On the Approximability of Budget Feasible Mechanisms. SODA 2011
[4] Gravin, N., Jin, Y., Lu, P., Zhang, C.: Optimal Budget-feasible Mechanisms for Additive Valuations. TEAC 2020
[5] Anari, N., Goel, G., Nikzad, A.: Budget Feasible Procurement Auctions. OR 2018

