Partial Allocations in Budget-Feasible Mechanism Design: Bridging Multiple Levels of Service and Divisible Agents



### Georgios Amanatidis<sup>1,7</sup>, Sophie Klumper<sup>2,3</sup>, Evangelos Markakis<sup>4,5,7</sup>, Guido Schäfer<sup>2,6</sup>, Artem Tsikiridis<sup>2</sup>

1. University of Essex 2. Centrum Wiskunde & Informatica (CWI)

3. Vrije Universiteit Amsterdam 4. Athens University of Economics and Business

5. Input/Output Global 6. University of Amsterdam 7. Archimedes (Athena Research Center)

# **Budget Feasible Procurement Auctions**

An auctioneer with a budget B > 0 is looking to hire a subset of *n* strategic agents.





# **Truthful Budget Feasible Mechanisms for MLoS**

Design Objectives for M = (x, p)

```
Budget-feasibility: A payment rule should satisfy that \forall c
```

 $\sum_{i=1}^n p_i(\boldsymbol{c}) \leq B.$ 

Individual Rationality: Bidders should be incentivized to participate, i.e.,  $\forall c$  and all  $i \in N$ 

 $p_i(\boldsymbol{c}) \geq x_i(\boldsymbol{c})c_i.$ 

Truthfulness: Bidders have no incentives to lie about their costs.

**Question [Singer '10]: Who** should the auctioneer hire and how much should he **pay** (keeping in mind his budget *B*)?

#### Multiple Levels of Service Model (MLoS):

Agents can offer k levels of service.



a-approximate mechanism: for every profile *c* it holds that

 $OPT_I^k(\boldsymbol{c}) \leq \alpha V(\boldsymbol{x}(\boldsymbol{c})).$ 

Primary Goal of the Auctioneer: Find an  $\alpha$ -approximate mechanism for the smallest  $\alpha$  possible.

#### **Truthful Mechanism Design for Single-parameter Domains**

**Definition**: An allocation algorithm x is monotone if for every profile c, every bidder  $i \in N$  and every  $c'_i \leq c_i$  it holds that  $x_i(c'_i, c_{-i}) \geq x_i(c)$ .

Myerson's Characterization: In a single parameter domain, a mechanism M = (x, p) is **truthful** and **individually rational** if and only if

1) x is monotone

2)  $p_i(c) = c_i x_i(c) + \int_{c_i}^{\infty} x_i(y, c_{-i}) dy, \forall i \in N.$ 

A Mechanism for Multiple Levels of Service

**Input**: A profile *c* and parameters  $\alpha$ ,  $\beta$ .

1. Let  $i^* = argmax_{i \in N} \frac{v_i(k)}{OPT_F^k(c_{-i})}$ .

 $OPT_{F}^{k}(\boldsymbol{c})$  is the fractional relaxation of  $OPT_{I}^{k}(\boldsymbol{c})$ .

Question (this work): What **hiring scheme** should the auctioneer implement and how much should he **pay** (keeping in mind his budget *B*)?

Formally:

An auctioneer with a budget *B* and a set of agents  $N = \{1, ..., n\}$  with *k* levels of service.

For each  $i \in \mathbb{N}$ , a private cost parameter  $c_i \ge 0$ .

Bidders can be hired for some levels of service (e.g., we can think of a service having premium versions).

A mechanism M = (x, p) consists of:

- 1. An allocation algorithm that takes as input a vector  $\mathbf{c} = (c_i)_{i \in N}$  of costs and outputs an allocation  $\mathbf{x}(\mathbf{c}) \in \{0, ..., k\}^n$ .
- 2. A payment rule that determines the payments  $p(c) \in \mathbb{R}^n_{\geq 0}$  of the auctioneer.

2. If  $v_{i^*}(k) \ge \beta OPT_F^k(c_{-i^*})$ , then set  $x_{i^*} = k$  and  $x_i = 0$  for all  $i \neq i^*$ .

3. Else:

- 1. Solve  $OPT_F^k(c)$  and call its allocation  $x^* \rightarrow A$  list of decreasing marginal rates of the form (marginal value)/cost.
- 2. Initialize x to be the integral part of  $x^*$ .

3. Keep removing the last element from the list and decrementing x until  $\sum_{i=1}^{n} v_i(x_i) \ge \alpha OPT_F^k(c)$  holds minimally.

4. Return **x** and set  $\mathbf{p}(\mathbf{c})$  according to Myerson.

Theorem 1: There exist constants  $a, \beta$  for which the mechanism is individually rational, truthful, budget-feasible and  $(2 + \sqrt{3})$ -approximate.

**Natural Connection with the Divisible-Agents Scenario**: Each agent  $i \in N$  can be hired fractionally (e.g., think of hiring them for a fraction of their time).

For each  $i \in N$ , there is a non-decreasing and concave function  $\bar{v}_i: [0,1] \mapsto \mathbb{R}_{\geq 0}$ .

♦ L-regularity: For  $L \ge 1$ , a function  $\bar{v}$ : [0,1]  $\mapsto \mathbb{R}_{\ge 0}$  is *L-regular Lipschitz* if  $\bar{v}(x) \le xL \bar{v}(1)$ .

 $\otimes$  The above mechanism can used as a dicretization procedure for this problem, i.e., as  $k \mapsto \infty$ , we approach the divisible setting.

Theorem 2: There is a mechanism for Divisible Agents that is individually-rational, truthful, budget-feasible and  $L(\phi + 1)$ -approximate.

- For each  $i \in N$ , there is a **non-decreasing concave** value function  $v_i: \{0, 1, \dots, k\} \mapsto \mathbb{R}_{\geq 0}$ .
- The total value of the auctioneer is  $V(\mathbf{x}(\mathbf{c})) := \sum_{i=1}^{n} v_i(x_i(\mathbf{c})).$
- For each  $i \in N$  we assume that  $c_i k \leq B$  (each bidder can be hired entirely on their own).

**The Linear** (L = 1) **Case:** The guarantee becomes  $\phi + 1$ , matching the state-of-the-art mechanism of [Klumper & Schäfer '22] for the divisible-agents scenario. **But we can do slightly better!** 



# References

[1] Singer, Y.: Budget Feasible Mechanisms. FOCS 2010

[2] Klumper, S., Schäfer, G.: Budget Feasible Mechanisms for Procurement Auctions with Divisible Agents. SAGT 2022

[3] Chen, N., Gravin, N., Lu, P.: On the Approximability of Budget Feasible Mechanisms. SODA 2011
[4] Gravin, N., Jin, Y., Lu, P., Zhang, C.: Optimal Budget-feasible Mechanisms for Additive Valuations. TEAC 2020
[5] Anari, N., Goel, G., Nikzad, A.: Budget Feasible Procurement Auctions. OR 2018