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Abstract

We study the performance of the discriminatory price auction under the uniform bidding interface,
which is one of the popular formats for running multi-unit auctions in practice. We undertake an equi-
librium analysis with the goal of characterizing the inefficient mixed equilibria that may arise in such
auctions. We consider bidders with capped-additive valuations, which is in line with the bidding format,
and we first establish a series of properties that help us understand the sources of inefficiency under
mixed strategies. Moving on, we then use these results to derive new lower and upper bounds on the
Price of Anarchy of mixed equilibria. For the case of two bidders, we arrive at a complete character-
ization of inefficient equilibria and show an upper bound of 1.1095, which is also tight. For multiple
bidders, we show that the Price of Anarchy is strictly worse, improving the best known lower bound
for submodular valuations. We further present an improved upper bound of 4/3 for the special case
where there exists a ”high” demand bidder. This class of instances is believed to be representative of the
worst-case inefficiency, and therefore our results strengthen the perception that such auctions can work
well in practice in terms of the generated social welfare. Finally, we also study Bayes-Nash equilibria,
and exhibit a separation result that had been elusive so far. Namely, already with two bidders, the Price
of Anarchy for Bayes-Nash equilibria is strictly worse than that for mixed equilibria. Such separation
results are not always true (e.g., the opposite is known for simultaneous second price auctions) and reveal
that the Bayesian model here introduces further, albeit to a small extent, inefficiency.

1 Introduction

Multi-unit auctions form a quite popular transaction mean for selling multiple identical units of a single
good. They have been in use for a long time, and there are by now several practical implementations across
many countries. Some of the most prominent applications involve government sales of treasury securities to
investors [6], as well as electricity auctions (for distributing electrical energy) [18]. Apart from governmental
use, they are also run in other financial markets, and they are being deployed in various platforms, including
several online brokers [16]. In the economics literature, multi-unit auctions have been a subject of study ever
since the seminal work of Vickrey [23], and some formats were conceived even earlier, by Friedman [11].

The focus of our work is on the welfare performance of the discriminatory price auction, which is also
referred to as pay-your-bid auction. In particular, we study the uniform bidding interface, which is the
format most often employed in practice. Under this format, each bidder submits two parameters, a monetary
per-unit bid, for her willingness to pay per unit, along with an upper bound on the number of units desired.
Hence, each bidder is essentially asked to declare a capped-additive curve (a special case of submodular
functions). Given the bids, the auctioneer then allocates the units by satisfying first the demand of the bidder
with the highest monetary bid, then moving to the second highest bid, and so on, until there are no units left.
As a price, each winning bidder pays his bid multiplied by the number of units received.
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Multi-unit auctions have received considerable attention in the literature, given their practical appeal.
Since these mechanisms are not truthful, in the more recent years, a few works have already studied the social
welfare guarantees that can be obtained at equilibrium. The outcome of these works is quite encouraging
for the discriminatory price auction. Namely, pure Nash equilibria are always efficient, whereas for mixed
and Bayes-Nash equilibria, the Price of Anarchy is bounded by 1.58 [9] for submodular valuations. These
results suggest that simple auction formats can attain desirable guarantees and provide theoretical grounds
for the overall success in practice.

Despite however these positive findings, there has been no progress on improving the current Price
of Anarchy bounds. The known lower bound of 1.109 by [8] is quite far from the upper bounds derived
by the commonly used smoothness-based approaches, [9, 22], which however do not seem applicable for
producing further improvements. We believe the main difficulty in getting tighter results is that one needs to
delve more deeply into the properties of Nash equilibria. But obtaining any form of characterization results
for mixed or Bayesian equilibria is a notoriously hard problem. Even with two bidders it is often difficult to
describe how the set of equilibria look like.

1.1 Contribution

Motivated by the previous discussion, in Section 3.3 we initiate an equilibrium analysis for enhancing our
understanding of mixed equilibria. We consider bidders with capped-additive valuations, which is a subclass
of submodular valuations, and consistent with the bidding format. Our results can be seen as a partial
characterization of inefficient mixed equilibria, and our major highlights include both structural properties
on the demand profile (see Theorem 14), as well as properties on the distributions of the mixed strategies
(see Corollary 20, Theorem 22 and Lemma 24).

Moving on, in Section 4, we use these results to derive new lower and upper bounds on the Price of
Anarchy of mixed equilibria. For the case of two bidders, we arrive at a complete characterization of
inefficient equilibria and show an upper bound of 1.1095, which is also tight. For multiple bidders, we show
that the Price of Anarchy is strictly worse, which also improves the best known lower bound for submodular
valuations [8]. We further present an improved upper bound of 4/3 for the special case where there exists a
”high” demand bidder. We believe these latter instances are representative of the worst-case inefficiency that
may arise, and refer to the relevant discussion in Section 4.2. To summarize, our results show that in several
cases, the Price of Anarchy is even lower than the previous bound of [9] and strengthen the perception that
such auctions can work well in practice in terms of generated welfare.

Finally, in Section 5, we also study Bayes-Nash equilibria, and we exhibit a separation result that had
been elusive so far, even under more general valuations: already with two bidders, the Price of Anarchy for
Bayes-Nash equilibria is strictly worse than for mixed equilibria. Such separation results, though intuitive,
do not hold for all auction formats (see e.g. simultaneous second price auctions when bidders have submod-
ular valuations [7]) and reveal that the Bayesian model here introduces a further source of inefficiency.

1.2 Related Work

For an exposition on multi-unit auctions and their earlier applications, we refer to the books [14] and [15].
For more recent works on applications, we refer to [6, 12, 18], for treasury bonds, carbon licence auctions,
and electricity auctions, respectively.

Regarding the inefficiency of equilibria, [1] was among the first works that studied the sources of inef-
ficiency in multi-unit auctions. For the discriminatory price auction, the Price of Anarchy was later studied
in [22], and the currently best upper bound has been obtained by [9], which is e/(e − 1) ≈ 1.58 for bid-
ders with submodular valuations (both for mixed and for Bayes-Nash equilibria). These results exploit the
smoothness-based techniques, developed by [19, 22]. One can also obtain slightly worse upper bounds for
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subadditive valuations, by using a different methodology, based on [10]. As for lower bounds, the only con-
struction known for submodular valuations is by [8], showing that the Price of Anarchy is at least 1.109. In
parallel to these results, there has been a series of works on the inefficiency of many other auction formats,
ranging from multi-unit to combinatorial auctions, see among others, [4, 5, 7, 10].

Apart from social welfare guarantees, several other aspects or properties of equilibrium behavior have
been studied. Recently in [17] a characterization of equilibria is given for a model where the supply of units
can be drawn from a distribution. In the past, several works have focused on revenue equivalence results
between the discriminatory price and the uniform price auction, see e.g. [2, 20]. On a different direction,
comparisons from the perspective of the bidders is carried out in [3].

2 Notation and Definitions

We consider a discriminatory price multi-unit auction, involving the allocation of k identical units of a single
item, to a set N = {1, . . . , n} of bidders. Each bidder i ∈ N has a private value vi > 0 which reflects her
value per unit and a private demand di ∈ Z+ which reflects the maximum number of units bidder i requires.
Therefore, if the auction allocates xi ≤ k units to bidder i, her total value will be min{xi, di} · vi. We note
that this class of valuations is a subclass of submodular valuations, and includes all additive vectors (when
di = k). We will refer to them as capped-additive valuations.

We focus on the following simple format for the discriminatory price auction, which is known as the
uniform bidding interface. The auctioneer asks each bidder i ∈ N to submit a tuple (bi, qi), where bi ≥ 0,
is her monetary bid per unit (not necessarily equal to vi), and qi is her demand bid (not necessarily equal
to di). We denote by b = (b1, . . . , bn) the monetary bidding vector, and similarly q will be the declared
demand vector. For a bidding profile (b,q), the auctioneer allocates the units by satisfying first the demand
of the bidder with the highest monetary bid, then moving to the second highest bid, and so on, until there
are no units left. Hence, all the winners have their demand satisfied, except possibly for the one selected
last, who may be partially satisfied. Moreover, we assume that in case of ties, a deterministic tie-breaking
rule is used, which does not depend on the input bids submitted by the players to the auctioneer (e.g., a fixed
ordering of the players suffices).

For every bidding profile (b,q), we let xi(b,q) ≤ qi be the number of units allocated to bidder i.
In the discriminatory auction, the auctioneer requires each bidder i to pay bi per allocated unit, hence a
total payment of bi · xi(b,q). The utility function of bidder i ∈ N given a bidding profile (b,q) is:
ui(b,q) = min{xi(b,q), di}vi − xi(b,q)bi.

Viewed as games, these auctions have an infinite pure strategy space, and we also allow bidders to play
mixed strategies, which are probability distributions over their set of pure strategies. When each bidder i ∈
N uses a mixed strategyGi, she independently draws a bid (bi, qi) fromGi. We refer to G = ×ni=1Gi as the
product distribution of bids. Under mixed strategies, the expected utility of a bidder i is E(b,q)∼G[ui(b,q)].

Definition 1. We say that G is a mixed Nash equilibrium when for all i ∈ N , all b′i ≥ 0 and all q′i ∈ Z+

E
(b,q)∼G

[ui(b,q)] ≥ E
(b−i,q−i)∼G−i

[ui((b
′
i,b−i), (q

′
i,q−i))] .

We note that in any equilibrium, if a bidder i declares with positive probability a bid that exceeds vi, she
should not be allocated any unit, since such strategies are strictly dominated by bidding the actual value vi.

Fact 2. Let G be a mixed Nash equilibrium. The probability that a bidder i is allocated some units, condi-
tioned that she bids higher than vi, is 0.

In the sequel, we focus on equilibria, where the monetary bids never exceed the value per unit.
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Given a valuation profile (v,d), we denote by OPT (v,d) the optimal social welfare (which can be
computed very easily by running the allocation algorithm of the auction with the true value and demand
vector). We also denote by SW (G) the expected social welfare of a mixed Nash equilibrium G, i.e.,
equal to E(b,q)∼G[

∑
i min{xi(b,q), di}vi]. The Price of Anarchy is the worst-case ratio OPT (v,d)

SW (G) over all
valuation profiles (v,d), and equilibria G.

3 Towards a Characterization of Inefficient Mixed Equilibria

In this section, we derive a series of important properties, that help us understand better how can inefficient
equilibria arise. These properties will help us analyze the Price of Anarchy in Section 4. All missing proofs
from this section and all subsequent sections, can be found in the Appendix.

3.1 Mixed Nash Equilibria with Demand Revelation

Our first result is that it suffices to focus on equilibria where bidders truthfully reveal their demand, resulting
therefore in a single-parameter strategy space for the bidders.

Theorem 3. Let (v,d) be a valuation profile, and G be a mixed Nash equilibrium. Then, for every i ∈ N ,
and in every pure strategy profile (bi, qi) ∼ Gi, we can replace qi by di so that the resulting distribution
remains a mixed Nash equilibrium with the same social welfare.

We prove the above theorem by a series of lemmas. The first step is the next lemma, showing that
it suffices to consider only equilibria, where nobody declares a demand bid that is lower than their true
demand.

Lemma 4. Let G be any mixed Nash equilibrium andG′i be the same asGi after replacing any qi < di with
di. Then G′ is also a mixed Nash equilibrium with the same social welfare.

The next step is to prove (in Lemma 5) that if
∑

i di > k, then it is sufficient to consider only Nash
equilibria, where nobody declares more demand that their true demand.

Lemma 5. Suppose that
∑

i di > k and let G be any mixed Nash equilibrium where nobody declares less
demand and G′i be the same as Gi after replacing any qi > di with di. Then G′ is also a mixed Nash
equilibrium with the same social welfare.

The remaining case that has not been covered by Lemma 5, is when the total demand does not exceed
k:
∑

i di ≤ k. But as we show below, these are efficient equilibria.

Lemma 6. If
∑

i di ≤ k then the social welfare of any mixed Nash equilibrium is optimal.

Proof of Theorem 3. The proof follows by combining Lemmas 4, 5 and 6. �

3.2 Existence of Non-empty-handed Bidders

For the rest of the paper we consider only strategy profiles where the bidders’ demand bid matches their
true demand. The main goal of this subsection is to derive Theorem 14, which is a crucial property for
understanding the formation of inefficient mixed equilibria. To proceed, we give first some further notation
to be used in this and the following sections.
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Further notation. Given Theorem 3, instead of using distributions on tuples (bi, qi), we suppose that
each bidder i ∈ N independently draws only a monetary bid bi from a distribution Bi and we refer to
B = ×ni=1Bi as the product distribution of monetary bids or just bids from now on. For a bidding profile b,
the utility of a bidder i will simply be denoted as ui(b), instead of ui(b,d). Definition 1 is also simplified,
and we say that B is an equilibrium if Eb∼B[ui(b)] ≥ Eb−i∼B−i [ui((b

′
i,b−i))], for any i and any b′i ≥ 0.

Similarly, the social welfare of a mixed Nash equilibrium B is given by just SW (B) instead of SW (G).
For a mixed strategy bidding profile B, we denote by W (B) the set of bidders with positive expected

utility, i.e., W (B) = {j : Eb∼B[uj(b)] > 0}, and let BW = ×i∈W (B)Bi. Moreover, the support of a
bidder i in B is the domain of the distribution Bi, that i plays under B, denoted by Supp(Bi). We denote
by `(Bi), h(Bi) the leftmost and rightmost points in the support of bidder i. In particular, if the rightmost
part of the domain of Bi is a mass point b or an interval [a, b] then h(Bi) = b, and similarly for `(Bi) (in
cases of distributions over intervals, we can always assume that the domain contains only closed intervals,
because the endpoints are chosen with zero probability). We further denote by `(BW ), h(BW ) the leftmost
and rightmost points of the union of all the supports of W (B).

For i = 1, . . . , n we denote by Fi the CDF of Bi and by fi their PDF. Moreover, given a profile
b, it is often useful in the analysis to think of the vector of winning bids that a bidder i faces, denoted
by β(b)−i = (β1(b−i), . . . , βk(b−i)). Here βj(b−i) is the j-th lowest winning bid of the profile b−i,
for j = 1, . . . , k. This implies that, under profile b, bidder i is allocated j = 1, . . . , k − 1 units when
βj(b−i) < bi < βj+1(b−i) and k units when βk(b−i) < bi. We note that because we focus on the uniform
bidding interface, some consecutive βj values may coincide and be equal to the bid of the same winning
bidder. When b−i ∼ B−i, for i = 1, . . . , n and j = 1, . . . , k, we denote the CDF of the random variable
βj(b−i) as F̂ij .

Fact 7. Let B−i be a product distribution of bids. Then for all α ≥ 0, where no bidder other than (possibly)
i has a mass point,

E
b−i∼B−i

[xi(α,b−i)] =

di∑
j=1

F̂ij(α) .

Given a bidding profile B, for any bidder i we define

F̂ avgi (x) =

∑di
j=1 F̂ij(x)

di
,

to be the average CDF of the winning bids that bidder i competes against. Note that F̂ avgi is a CDF since it
is the average of a number of CDFs.

Remark 8. We remark that the F̂ij functions are right continuous as CDFs and moreover if the Fi functions
have no mass point, the same holds for the F̂ij functions. Additionally, if for any i the F̂ij functions are
continuous, so the F̂ avgi is as the average of continuous functions.

We start by ruling out certain scenarios that cannot occur at inefficient equilibria. Our first finding is that
we can safely ignore bidders with zero expected utility, since in any inefficient mixed Nash equilibrium they
do not receive any units.

Lemma 9. Any mixed Nash equilibrium B with at least one bidder with zero expected utility, but positive
expected number of allocated units, is efficient.

Next, we show that to have inefficiency at an equilibrium, there must exist at least two bidders with
positive expected utility.
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Lemma 10. Let (v,d) be a valuation profile and B be an inefficient mixed Nash equilibrium. Then,
|W (B)| ≥ 2.

The next warm-up properties involve the expected utility of a bidder under an equilibrium B, conditioned
that she bids within a certain interval or at a single point. We start with Fact 11, which is a straightforward
implication of the equilibrium definition, and proceed by arguing that no two bidders may bid on the same
point with positive probability. Theorem 13 concludes by stating the main property regarding the utility of
bidders when bidding in their support.

Fact 11. Let B be an equilibrium. For a bidder i, consider a partition of Supp(Bi) (or of a subset of
it) into smaller disjoint sub-intervals, say I1, . . . , I`, such that Bi has a positive probability on each sub-
interval (mass points may also be considered as sub-intervals with zero measure). Then, it should hold that
Eb∼B[ui(b) | bi ∈ Ir] = Eb∼B[ui(b)] for every r = 1, . . . , `.

Observation 12. In any mixed Nash equilibrium B there can be no bidders i, j ∈ W (B) and point z such
that Pr[bi = z] > 0 and Pr[bj = z] > 0.

Based on Fact 11, we can obtain the following point-wise version. Variations of the version below have
also appeared in related works, see e.g., [8].

Theorem 13. Consider a bidder i, and a mixed Nash equilibrium B. Then for any z ∈ Supp(Bi), where no
other bidder has a mass point, Eb−i∼B−i [ui(z,b−i)] = Eb∼B[ui(b)].

The main theorem of this section follows, stating the existence of a special bidder that always receives
at least one unit that we call non-empty-handed.

Theorem 14. Let (v,d) be a valuation profile, and let B be a mixed Nash Equilibrium. If W (B) ≥ 1, then
there exists a bidder i ∈W (B), such that ∑

j∈W (B)\{i}

dj ≤ k − 1 .

Proof. On the contrary, assume that for every i ∈ W (B), it holds that
∑

j∈W (B)\{i} dj ≥ k. Let i be a
bidder for which ` = `(BW ) ∈ Supp(Bi). We will distinguish the following cases.
Case 1: There exists an interval in the form [`, ` + ε], on which Bi has a positive probability mass and on
which the bidders of W (B) \ {i} have a zero mass. We note that we also allow ε = 0, i.e., that i has a mass
point on ` and the other bidders do not. This means that when bidder i bids within [`, ` + ε], all the other
bidders from W (B) are above him. Since we assumed that the total demand ofW (B)\{i} is at least k, this
means that bidder i does not win any units in this case. Since i bids with positive probability in [`, ` + ε],
Eb∼B[ui(b)] = 0, which is a contradiction to Fact 11.
Case 2: By Observation 12 it cannot be the case that bidder i and some other bidder have a mass point on `.
Case 3: Any mass point that may exist by the bidders is at a point x > `, and there is also no interval starting
from ` that is used only by bidder i. Hence, there exists an interval I in the form I = [`, ` + ε] for some
small enough ε > 0, and a bidder j ∈W (B) \ {i}, such that both Bi and Bj contain I in their support, and
have positive probability mass on I without mass points (there can be even more than just one such bidder
j).

By Theorem 13, we obtain that Eb−i∼B−i [ui(`,b−i)] = u. But this is a contradiction, because by
bidding `, bidder i ranks lower than all other bidders of W (B) with probability one. By our assumption
that

∑
j∈W (B)\{i} dj ≥ k, there are no units left for i when she ranks last among W (B), and therefore,

Eb−i∼B−i [ui(`,b−i)] = 0 6= u.

Next we give as a corollary that if all bidders have unit demand, any mixed Nash equilibria is efficient.
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Corollary 15. Let (v,d) be a valuation profile with only unit-demand bidders, i.e., di = 1 for all i. Then
any mixed Nash equilibrium B is efficient.

Proof. If |W (B)| < 2 then, by Lemma 10, B is efficient. If |W (B)| ≥ 2, by Theorem 14 there exist
at most k bidders with positive expected utility. The rest of the bidders have zero expected allocation by
Lemma 9, otherwise B is efficient. The only way that B is inefficient is if there exist bidders i and j with
vi < vj and i ∈ W (B) whereas j /∈ W (B). In such a case, E[xi(b)] > 0 and if bidder j bids vi + ε < vj ,
E[xj(vi + ε,b−j)] > E[xi(b)] > 0, which results in a positive expected utility for bidder j contradicting
the fact that B is a Nash equilibrium.

3.3 Properties of the support and the CDFs of Mixed Nash Equilibria

Theorem 14, that guarantees the existence of a non-empty-handed bidder, will help us to establish a set of
further properties that characterize the structure of inefficient mixed Nash equilibria. These properties (and
especially Theorem 22) will be important to establish the inefficiency results that follow.

We start with an observation regarding the highest bid of any bidder i ∈W (B) which should be strictly
less than vi.

Observation 16. For any bidder i ∈W (B), h(Bi) < vi.

Proof. Suppose on the contrary that for some i ∈W (B), h(Bi) = vi. Then, by Theorem 13, Eb∼B[ui(b)] =
Eb−i∼B−i [ui(vi,b−i)] = 0, which contradicts the fact that i ∈W (B).

The next lemma shows that at any equilibrium B, bidders who are not non-empty-handed cannot have
higher bids in their support than the support of the non-empty-handed bidders. Additionally, any bidder who
is non-empty-handed does not have a reason to use bids that are higher than the maximum bids of all other
winning bidders. The reason is that if such differences existed, then there would be incentives to win the
same number of units by lowering one’s bid.

Lemma 17. Let (v,d) be a valuation profile and B be an inefficient mixed Nash equilibrium. Then, for any
non-empty-handed bidder i, it holds that h(Bi) = h(BW\{i}) = h(BW ).

Next we show that no bidder may be the only bidder bidding in any point or interval.

Lemma 18. Let (v,d) be a valuation profile and B be a mixed Nash equilibrium. For all i ∈ W (B), it
holds that Supp(Bi) ⊆

⋃
j∈W (B)\{i} Supp(Bj).

Lemma 19. Let (v,d) be a valuation profile and B be an inefficient mixed Nash equilibrium.
1) There exists no bidder i ∈W (B) and no point z ∈ Supp(Bi) \ {`(BW )}, with Fi(z) > limz→z− Fi(z),
i.e., there are no mass points among the bidders of W (B), except possibly the leftmost endpoint of all
bidders’ distributions.
2) At most one bidder i ∈ W (B) may have a mass point on `(BW ), i.e., Pr[bi = `(BW )] > 0, and i is a
non-empty-handed.

By combining Theorem 13 and Lemma 19 we get the following Corollary.

Corollary 20. For any inefficient mixed Nash equilibrium B the following hold:
1) For any bidder i and z ∈ Supp(Bi) \ {`(BW )}, Eb−i∼B−i [ui(z,b−i)] = Eb∼B[ui(b)].
2) If there exists a bidder i with Pr[bi = `(BW )] > 0, then i is a non-empty-handed bidder and
Eb−i∼B−i [ui(`(BW ),b−i)] = Eb∼B[ui(b)].
3) If no non-empty-handed bidder exists with mass point on `(BW ), for any bidder i with `(BW ) ∈
Supp(Bi), Eb−i∼B−i [ui(`(BW ),b−i)] = Eb∼B[ui(b)].
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Observation 21. For any inefficient mixed Nash equilibrium B, either there exists a bidder i ∈W (B) with
mass point on `(BW ) and this is a non-empty-handed bidder, or there are at least two non-empty-handed
bidders of W (B) with `(BW ) in their support.

Proof. If there exists a bidder i with mass point on `(BW ), then by Lemma 19 i is a non-empty-handed
bidder. If there is no such bidder then we argue that no bidder j ∈W (B) that is not non-empty-handed has
`(BW ) in their support.

Suppose on the contrary that `(BW ) ∈ Supp(Bj) for some bidder j that is not non-empty-handed. Then
since no bidder has a mass point on `(BW ), everybody bids above `(BW ) with probability one, leaving j
with no units while bidding `(BW ). By Corollary 20, Eb∼B[uj(b)] = Eb−j∼B−j [uj(`(BW ),b−j)] = 0
contradicting the fact that j ∈W (B).

By Lemma 18 there are at least two bidders bidding on `(BW ), which concludes the proof.

Given any (inefficient) equilibrium, the next theorem specifies the average CDF of the winning bids that
bidder i competes against, i.e., F̂ avgi , in i’s support.

Theorem 22. Let (v,d) be a valuation profile and B be an inefficient mixed Nash equilibrium. Then, for
i ∈W (B), the CDF F̂ avgi satisfies

F̂ avgi (z) =
ui

di(vi − z)
, ∀z ∈ Supp(Bi) ,

for some constant ui = Eb∼B[ui(b)] > 0.

Proof. Fix a bidder i ∈ W (B). For all intervals I ⊆ Supp(Bi), by Corollary 20 it must be that for all
z ∈ I \ `(BW )

E
b−i∼B−i

[ui(z,b−i)] = E
b∼B

[ui(b)] = ui > 0 .

The above equality is equivalent to

E
b−i∼B−i

[xi(z,b−i)] =
ui

vi − z
⇔ F̂ avgi (z) =

ui
di(vi − z)

,

for all z ∈ Supp(Bi). The last equivalence is due to Fact 7. The theorem follows since F̂ avgi is right
continuous.

A corollary of Theorem 22 is that the union of the support of the winners is an interval.

Corollary 23. Let (v,d) be a valuation profile and B be an inefficient mixed Nash equilibrium. Then, for
every bidder i ∈W (B),

⋃
j∈W (B)\{i} Supp(Bj) = [`(BW ), h(BW )].

The final lemma of this section shows that the rightmost point in the support of B can be expressed as a
function of the parameters of certain non-empty-handed bidders.

Lemma 24. Let (v,d) be a valuation profile and B be an inefficient mixed Nash equilibrium. Let i ∈W (B)
be the non-empty-handed bidder such that Pr[bi = `(BW )] > 0, or if no such bidder exists, then let i be
any non-empty-handed bidder with `(BW ) in his support. We have

h(BW ) = h(Bi) = vi − (k −
∑

j∈W (B)\{i}

dj)
vi − `(BW )

di
.
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Proof. Let i be the bidder specified by the lemma’s statement; note that such a bidder always exists by
Observation 21. By Lemma 17, h(BW ) = h(Bi), and by applying Corollary 20, it must be that

E
b−i∼B−i

[ui(`(Bi),b−i)] = E
b−i∼B−i

[ui(h(Bi),b−i)] . (1)

Moreover,

E
b−i∼B−i

[ui(h(Bi),b−i)] = E
b−i∼B−i

[xi(h(Bi),b−i)](vi − h(Bi)) = di(vi − h(Bi)) . (2)

Equation (2) holds since bidding h(Bi) guarantees outbidding every other bidder in the auction and thus
grants di units to i (recall that there is no mass point on h(Bi) due to Lemma 19, and therefore the event of
losing due to tie-breaking by bidding h(Bi) has probability zero).

On the other hand, note that by the way i has been defined, `(Bi) = `(BW ) and therefore

E
b−i∼B−i

[ui(`(Bi),b−i)] = E
b−i∼B−i

[ui(`(BW ),b−i)]

= E
b−i∼B−i

[xi(`(BW ),b−i)](vi − `(BW ))

= (k −
∑

j∈W (B)\{i}

dj)(vi − `(BW )) , (3)

where in the last equality above, we have that k −
∑

j∈W (B)\{i} dj > 0, since i is non-empty-handed. By
equating now (2) and (3), the lemma follows.

4 Price of Anarchy for mixed equilibria

In this section, we exploit the properties derived so far for mixed Nash equilibria, in order to analyze the
inefficiency of the discriminatory price auction. Since we will be dealing with inefficient equilibria, we
assume that in any valuation profile considered in this section, there are at least two bidders with a different
value per unit.

4.1 The case of two bidders

We pay particular attention to the case of n = 2. This is a setting where we can fully characterize in closed
form the distributions of the inefficient mixed Nash equilibria, and derive valuable intuitions for the worst-
case instances with respect to the Price of Anarchy, that are helpful also for auctions with multiple bidders.
The main result of this subsection is the following theorem, showing that the inefficiency is quite limited.

Theorem 25. For k ≥ 2, n = 2 and capped additive valuation profiles, the Price of Anarchy of mixed
equilibria is at most 1.1095, and this is tight as k goes to infinity.

We postpone the proof of Theorem 25, as we first need to establish some properties regarding the form
of inefficient mixed Nash equilibria with two bidders. For n = 2, a capped-additive valuation profile can
be described as (v,d) = ((v1, d1), (v2, d2)). Recall also that it is sufficient to focus our attention only on
profiles where d1 + d2 > k, since otherwise, by Lemma 6 any mixed equilibrium is efficient.

We start our analysis by characterizing the support of inefficient mixed Nash equilibria.

Lemma 26. Let (v,d) = ((v1, d1), (v2, d2)) be any capped-additive valuation profile of two bidders and
B = (B1, B2) be any inefficient mixed Nash equilibrium. Then:
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1. Supp(B1) = Supp(B2) = [`(B1), h(B1)], and `(B1) = 0.

2. h(B1) takes one of the following values

h(B1) = v1
d1 + d2 − k

d1
or h(B1) = v2

d1 + d2 − k
d2

.

The following theorem specifies the cumulative distribution functions that comprise any inefficient
mixed Nash equilibrium, along with a necessary condition for the existence of such equilibria. For a bidder
i below, we use the notation v−i and d−i to denote the value and demand of the other bidder.

Theorem 27. Let (v,d) = ((v1, d1), (v2, d2)) be a capped-additive valuation profile of two bidders and
B = (B1, B2) any inefficient mixed Nash equilibrium.

1. The cumulative distribution function of bidder i, for i = 1, 2, is

Fi(z) =
1

d1 + d2 − k

(
d−i(v−i − h(Bi))

v−i − z
− (k − di)

)
. (4)

2. Furthermore, for i being the non-empty-handed bidder with a mass point at 0, or if no such bidder
exists, being any non-empty-handed bidder, it holds that v−ivi ≥

d−i
di

,

Proof. It is convenient to look into the F̂ avgi distribution to derive the claimed formulas. In the two-bidder
environment, the sole source of competition is a single bidder. Firstly, for any bidder i, the other bidder
always obtains k − di units1 and there is a competition for the remaining di − (k − d−i) = d1 + d2 − k
units. Therefore, for the competitor of bidder i, we have:

F̂ avg−i (z) =

∑d−i
j=1 F̂−i,j(z)

d−i
=
k − di + (d1 + d2 − k)Fi(z)

d−i
.

Now by Theorem 22, for z ∈ Supp(B−i) (which is the same as Supp(Bi) by Lemma 26), we have

F̂ avg−i (z) =
u−i

d−i(v−i − z)
,

for some constant u−i > 0. By combining the last two equations and rearranging terms we obtain

Fi(z) =
1

d1 + d2 − k

(
u−i

v−i − z
− (k − di)

)
.

We now determine the appropriate value for u−i > 0 so that Fi(z) is a valid cumulative distribution
function in Supp(Bi). It must be that Fi(h(Bi)) = 1, since h(Bi) is the rightmost point in her support.
Hence,

1 =
1

d1 + d2 − k

(
u−i

v−i − hi(Bi)
− (k − di)

)
⇔ u−i = d−i(v−i − hi(Bi)) .

This establishes that Fi(z) satisfies Equation (4).
The second part of the theorem comes from the fact that the CDFs should also satisfy non-negativity. For

this, let i be the bidder specified by the second part of the theorem’s statement. Then, by using Lemma 24 it
is a matter of simple calculations to see that Fi(0) ≥ 0 is equivalent to v−i

vi
≥ d−i

di
. Since Fi is increasing,

we have established that this condition is necessary to enforce that Fi(z) ≥ 0 for every z ∈ Supp(Bi).
1This is consistent with Theorem 14 since when a bidder is not non-empty-handed, it must be that the demand of the other

bidder is k, and hence, she obtains k − di = 0 free units, as expected.

10



Remark 28. By Lemma 26 and Theorem 27, we can see that there can be at most two inefficient equilibria,
depending on how the interval of the support was determined.

Given an equilibrium B, let SW (B) be the expected social welfare derived by B. The next lemma
expresses the social welfare, as a function of the relevant parameters of a profile.

Lemma 29. Let (v,d) = ((v1, d1), (v2, d2)) be a capped-additive valuation profile and B be an inefficient
mixed equilibrium.. Let i be a non-empty-handed bidder such that Pr[bi = 0] > 0 or, if no such bidder
exists, let i be any non-empty-handed bidder. Then, the expected social welfare of the inefficient mixed
Nash equilibrium B is

SW (B) = d−i(v−i−vi)

(
1−

∫ h(Bi)

0

1

d1 + d2 − k

(
di(vi − h(Bi))

vi − z
− (k − d−i)

)
v−i − h(Bi)

(v−i − z)2
dz

)
+kvi .

We are now ready to prove Theorem 25.

Proof of Theorem 25. The properties established so far imply a full characterization of instances that have
inefficient equilibria. To establish Theorem 25, we will group instances into three appropriate classes and
we will solve an appropriately defined optimization problem that approximates the Price of Anarchy for
each subclass to arbitrary precision.

WLOG, suppose we are given a value profile (v,d) = ((v1, d1), (v2, d2)) of k units such that d1 ≥ d2.
We define the following two quantities, which we refer to as the normalized demands,

d̄1 =
d1

k
> 0 , d̄2 =

d2

k
> 0 . (5)

Essentially, we intend to use v1, v2, d̄1 and d̄2 as the variables of the optimization problem mentioned before.
Let B be any inefficient mixed Nash equilibrium. With a slight abuse of notation we view the term

h(Bi) as a function of the valuation profile parameters, as established by Lemma 26, and define the functions
hi(v, d̄) = vi

d̄1+d̄2−1
d̄i

for i = 1, 2. We pair these functions with two additional expressions SWi(v,d) for
i = 1, 2 which are (scaled) restatements of the social welfare of an equilibrium (as stated in Lemma 29),
solely in terms of the value profile (v,d) and k, and without dependencies on the underlying equilibrium
distributions. The reason we are able to do so, is Theorem 27, which tells us what the CDFs are, in terms of
the valuation profile. The exact form of SWi(v1, v2, d̄1, d̄2) for i = 1, 2 is

SWi(v, d̄) = d̄−i(v−i−vi)

(
1−

∫ hi(v,d̄)

0

1

d̄1 + d̄2 − 1

(
d̄i(vi − hi(v, d̄))

vi − z
− (1− d̄−i)

)
v−i − hi(v, d̄)

(v−i − z)2
dz

)
+vi .

To continue, let i be a non-empty handed bidder with a mass point at 0 or if no such bidder exists, let i be
any non-empty-handed bidder. Then,

kSWi(v, d̄) = SW (B) . (6)

To conclude the proof of the upper bound we solve three optimization problems that we distinguish
based on different cases for the values of the supports; we refer the reader to the appendix for the full proof.

By solving numerically those optimization problems we found out that in the worst case instance v1 =
1, v2 ≈ 0.526, d̄1 = 1, d̄2 ≈ 0.357. It is not hard to convert the variables to the underlying worst case
instance, which we present in the next paragraph.
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Tight Example. Consider an instance of the discriminatory auction for k ≥ 2 units and n = 2 bidders.
Bidder 1 has value v1 = 1 and d1 = k, whereas bidder 2 has a value v2 = 0.526 and d2 = d0.357ke units.
Let B1, B2 be two distributions supported in [0, d2k ]. Note that v2 >

d2
k . In accordance to Equation (4), the

cumulative distribution functions of B1 and B2 are

F1(z) =
v2 − d2

k

v2 − z
, F2(z) =

k − d2

d2

z

1− z
.

It is easy to verify that B = (B1, B2) is indeed a mixed equilibrium. The optimal allocation is for bidder 1
to obtain all k units and the expected social welfare of B can be easily derived using Lemma 29. The worst
case inefficiency ratio occurs as k grows and is approximately 1.1095. �

4.2 Multiple Bidders

We move now to instances with more than two bidders. Inspired by the construction in the previous section,
we provide first a lower bound on the Price of Anarchy. This bound shows a separation between n = 2 and
n > 2 in the sense that equilibria can be more inefficient with a higher number of bidders. It also improves
the best known lower bound of the discriminatory price auction for the class of submodular valuations,
which was 1.109, by [8]. However, the improvement is extremely small.

Theorem 30. For n > 2, and for the class of mixed strategy Nash equilibria, PoA ≥ 1.1204.

The above bound is the best lower bound we have been able to establish, even after some extensive
experimentation (driven by the results in the remainder of this section). It is natural to wonder if one can
have a matching upper bound, which would establish that the Price of Anarchy remains very small even for
a large number of bidders. Recall that from [9], we know already a bound of e/(e − 1) ≈ 1.58. Although
we have not managed to provide an upper bound that covers all instances, we will provide an improved
upper bound for a special case, for which there is some evidence that it captures worst-case scenarios of
inefficiency. At the same time, we will be able to characterize the format of such worst case equilibria in
these instances.

To obtain some intuition, it is instructive to look at our two lower bounds, the first one in Section 4.1, and
the second one in Theorem 30. One notices that the main source of inefficiency is the fact that the auctioneer
accepts multi-unit demand declarations. When this does not occur (i.e. each bidder requires one unit), we
have already shown in Corollary 15 that mixed Nash equilibria attain optimal welfare. When multi-demand
bidders are present, Theorem 25 shows that in the case of two bidders, the most inefficient mixed Nash
equilibrium occurs when a participating bidder declares a demand for all the units, whereas the opponent
requires a much smaller fraction of the supply. In the example of Theorem 30 above, we have extended
this paradigm for multiple bidders with an arbitrary demand structure but under the assumption that one of
the bidders requires all the units (the additive bidder). Such a setting, of one large-demand bidder facing
competition by multiple small-demand bidders has also been discussed in [3]. Furthermore, there exist other
auction formats that have needed such a demand profile at their worst case instances, see e.g., [5] for tight
examples of the uniform price auction. To summarize, it seems unlikely that the worst instances involve
only bidders with low demand or bidders with small variation on their demands.

Given the above, in the remainder of this section, we will analyze the family of instances where there
exists an additive bidder (with demand equal to k) and where she also has the highest value per unit (in fact
the latter assumption is needed only for the Price of Anarchy analysis but not for the characterization of the
worst-case demand profile and the equilibrium strategies). We strongly believe that this class is representa-
tive of the most inefficient mixed Nash equilibria (which is true already for the case of two bidders).

The main result of this section is the following.
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Theorem 31. Consider the class of valuation profiles, where there exists an additive bidder α with the
highest value, and an equilibrium B, such that α ∈W (B). Then, the Price of Anarchy is at most 4/3.

The proof of the theorem is by following a series of steps. The existence of the additive bidder
helps in the analysis, because a direct corollary of Theorem 14 is that the additive bidder is the sole
non-empty-handed bidder (everyone else faces competition for all the units).

Corollary 32 (by Theorem 14). Consider a valuation profile (v,d) with an additive bidder α, that admits
an equilibrium B, such that α ∈ W (B). Then, bidder α is the unique non-empty-handed bidder under B,
thus, ∑

i∈W (B)\{α}

di ≤ k − 1 .

To proceed, we ensure that for the instances described by Theorem 31, it suffices to analyze the equilibria
where the bidder α belongs to W (B), i.e., there cannot exist a more inefficient equilibrium B′ of these
instances where α 6∈W (B′). This is addressed by the following lemma.

Lemma 33. Consider a valuation profile, and suppose that it admits two distinct inefficient equilibria, B
and B′. If i ∈W (B) is a non-empty-handed bidder in B, then i ∈W (B′) .

Proof. Let i ∈ W (B) be a non-empty-handed bidder in B and suppose for contradiction that i 6∈ W (B′).
We know that

∑
j∈W (B)\{i} dj ≤ k−1. Since B′ is inefficient, and i does not belong to W (B′), by Lemma

6, there must exist a bidder m such that m ∈W (B′) \W (B).
We can now look more closely on the bidding behavior of bidders i and m in B′. Since i 6∈ W (B′), by

Lemma 9 we know that i ranks lower than all other winning bidders with probability one. From this, we
claim that Prbm∼B′m [bm ≥ vi] > 0. Indeed if this was not the case, then Prbm∼B′m [bm < vi] = 1, and
bidder i would have an incentive to outbid bidder m by bidding a value lower than vi and obtain positive
utility, which is a contradiction. This implies that h(B′m) ≥ vi. By Observation 16 on the maximum bid
submitted by the players of W (B′), this yields that vm > vi.

To obtain a contradiction, we come back to the equilibrium B. Again by Observation 16, h(Bi) < vi,
and therefore, Prbi∼Bi [bi < vm] = 1. But this implies that bidder m has an incentive to outbid bidder i and
obtain a positive utility, which completes the proof.

Lemma 33 and Corollary 32 guarantee that to prove an upper bound for the instances described by
Theorem 31, we can focus only on the equilibria where the additive bidder belongs to W (B). From now
on, we fix a bidder α and an inefficient equilibrium B, so that α is additive and α ∈W (B).

Corollary 32 already gives us an insight about the competition in such an equilibrium B. While bidder
α will have to compete against the other bidders of W (B) to win extra units, in addition to those that she is
guaranteed to obtain, each bidder in W (B) \ {α} only competes against α. Each of them is not guaranteed
any units unless she outbids α (bidder α is the only cause of externality for bidders in W (B) \ {α} and
anyone bidding lower than α cannot get any units). If bidder α did not exist, the other winners could be
automatically granted the demand they are requesting since, in total, it is smaller than k and hence, there is
no competition among them.

Observation 34. F̂ avgi (z) = Fα(z), for every i ∈W (B) \ {α}, where Fα is the CDF of bidder α.

To proceed, we identify some further properties on the support of the mixed strategies.

Lemma 35. For the equilibrium B under consideration, it is true that:

1. Supp(Bα) = [`(BW ), h(BW )].
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2. For any two bidders i, j ∈W (B)\{α} such that vi 6= vj , the set Supp(Bi)∩Supp(Bj) is of measure
0 (intersection points can occur only at endpoints of intervals).

Lemma 35 suggests that we can group the bidders according to their values (since only bidders with the
same value can overlap in their support). Let r ≤ |W (B) \ {α}| represent the number of distinct values
v1, . . . , vr that bidders in W (B) \ {α} have. We can partition the bidders of W (B) \ {α} into r groups
W1(B), . . . ,Wr(B) such that, for j = 1, . . . , r, the bidders in group Wj(B) have value vj . Similarly,
we split the support of the winning bidders [`(BW ), h(BW )] into r intervals, i.e., [`(BW ), h(BW )] =⋃r
j=1 Ij(B), where each interval j ∈ {1, . . . , r} is formed as

Ij(B) =
⋃

i∈Wj(B)

Supp(Bi) .

The following is a direct corollary of Lemma 35.

Corollary 36. For every s, t ∈ {1, . . . , r} with s 6= t, the set Is(B) ∩ It(B) is of measure 0.

When all bidders inW (B)\{α} have distinct values there are precisely |W (B)\{α}| intervals whereas
when they all have a common value, they must be bidding on the entire interval [`(W (B)), h(W (B))] (the
equilibrium in the 2-bidder case when d1 = k, in Section 4.1, is one such example). We sometimes denote
as I0(B) the interval of losing bidders [0, `(BW )], i.e., for the bidders inN \W (B). Note that given B, the
only criterion for the membership of the support of a bidder i in an interval Is(B) is their value.

The next step is quite crucial in simplifying the extraction of our upper bound. We show that the worst
case demand structure for the bidders in W (B) \ {α} is when they all have unit demand.

Theorem 37. For the value profile (v,d) and the equilibrium B under consideration, there exists another
value profile (v′,d′) and a product distribution B′ such that

1. α ∈W (B′) is an additive bidder and for every bidder i ∈W (B′) \ {α}, it holds that d′i = 1.

2. B′ is a mixed Nash equilibrium for (v′,d′).

3. OPT (v,d)
SW (B) = OPT (v′,d′)

SW (B′) .

For the remainder of the section, it suffices to analyze valuation profiles, that possess equilibria where
the members of W (B) are either additive or unit-demand. Recall, that due to Corollary 32, there must
be a unique additive bidder. Hence, we fix an instance given by a valuation profile (v,d), so that at the
equilibrium B, the setW (B) consists of n unit-demand bidders plus the additive bidder α, i.e. n = |W (B)\
{α}|. Moreover, due to the following observation we may assume, without loss of generality, that the support
of each unit-demand bidder has no overlapping intervals with other bidders from W (B) \ {α}.

Lemma 38. Let (v,d) be a value profile and let B be any mixed Nash equilibrium such that the members
of W (B) are all unit-demand bidders aside from one additive. Then, there exists a mixed Nash equilibrium
B′ with disjoint support intervals such that SW (B) = SW (B′).

Therefore, by Corollary 36 and the discussion preceding it, the support of each bidder i = 1, . . . , n
is [`(Bi), h(Bi)]. Note that due to Lemma 35, the unit-demand bidders must cover the entire interval
[`(BW ), h(BW )]. Therefore, for a unit-demand bidder i = 1, . . . , n, it must be that `(Bi) = h(Bi−1),
assuming for convenience that h(B0) = `(BW ).

We continue, by understanding further the support intervals and the distributions of the equilibrium B.
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Theorem 39. For the value profile (v,d) under consideration, the following properties hold:

1. For bidder α, we have

h(Bα) = h(Bn) = h(BW ) = vα − (k − n)
vα − `(Bα)

k
.

Moreover, for every unit-demand bidder i = 1, . . . , n− 1 it holds that

`(Bi+1) = h(Bi) = vα −
(k − n)(vα − `(Bα))

k − n+ i
. (7)

2. The CDF Fα of bidder α, is a branch function, so that for i = 1, . . . , n, Fα(z) = F iα(z) for every
z ∈ [h(Bi−1), h(Bi)] with

F iα(z) =

n∏
j=i+1

(
vj − h(Bj)

vj − h(Bj−1)

)
vi − h(Bi)

vi − z
. (8)

Proof. For the first part of the theorem, we can easily obtain the expression for h(Bα), for the additive
bidder α, since she is the sole non-empty-handed bidder, by applying Lemma 24. To obtain the expressions
for the rightmost points of the unit-demand bidders, we study the utility function of bidder α focusing on
the points h(B1), h(B2), . . . , h(Bn). In fact, by Corollary 20 it must be that the expected utility at all these
points is equal. Since these are the rightmost endpoints of the support of the unit-demand bidders (and none
of them is a mass point for any of them), bidder α is guaranteed i+ k − n units when she bids h(Bi). This
means that for i = 1, . . . , n− 1,

E
b−α∼B−α

[uα(h(Bi),b−α)] = E
b−α∼B−α

[uα(h(Bi+1),b−α)]⇔

(k − n+ i)(va − h(Bi)) = (k − n+ i+ 1)(va − h(B(i+ 1))) .

The above yields a recursive relation, where h(Bi) can be obtained as a function of h(Bi+1). Since h(Bn) =
h(Ba) is known, we can use induction and establish (7).

For the second part of the theorem, we use that for i = 1, . . . , n, and z ∈ Supp(Bi) = [h(Bi−1), h(Bi)],
we have

E
b−i∼B−i

[ui(z,b−i)] = E
b−i∼B−i

[ui(h(Bi),b−i)] = Fα(h(Bi))(vi − h(Bi)) ,

where the last equality is by Observation 34, that F̂ avgi (z) = Fα(z). By using Theorem 22 for F̂ avgi (z), we
have

Fα(z) =
Fα(h(Bi))(vi − h(Bi))

vi − z
∀z ∈ Supp(Bi) . (9)

To proceed, it is convenient to think of Fα as a branch function, with a different branch corresponding
to each support interval of the unit-demand bidders. In particular, we let F iα(z) = Fα(z) for z ∈ Supp(Bi).
Moreover, by Lemma 19 the distribution Fα must have no mass points in its support at any intermediate
point h(Bi) for i = 1, . . . , n− 1. Therefore, since h(Bi) belongs both to Supp(Bi) and to Supp(Bi+1), in
order to have continuity, it must hold that

F iα(h(Bi)) = F i+1
α (h(Bi)) ∀i = 1, . . . , n− 1 .

By combining the last two equalities, Equation (9) can be rewritten as

F iα(z) =
F i+1
α (h(Bi))(vi − h(Bi))

vi − z
.
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Hence, we have expressed F iα as dependent on the term F i+1
α (h(Bi)). Finally, since we know that

Fnα (h(Bn)) = 1, we can work inductively and obtain the closed form of each branch Fαi , which completes
the proof.

Having described the structure of the equilibrium B, we can compute its expected social welfare, which
can be verified that it is given by the following expression.

Before stating our upper bound, we present two straightforward inequalities that are a direct consequence
of the definition of a mixed Nash equilibrium. These inequalities will be very useful in obtaining the upper
bound on the Price of Anarchy.

Lemma 40. Consider a value profile (v,d) and any inefficient mixed Nash Equilibrium B with a setW (B)
that consists only of additive or unit-demand bidders. The following properties hold

1. For i = 1, . . . , n− 1, m = i+ 1, . . . , n and every z ∈ [h(Bm−1), h(Bm)] it holds that

m−1∏
j=i+1

vj − h(Bj)

vi − h(Bj−1)
≥ vi − z
vi − h(Bi)

vm − h(Bm−1)

vm − z
. (10)

2. For i = 2, . . . , n, m = 1, . . . , i− 1 and every z ∈ [h(Bm−1), h(Bm)]

i−1∏
j=m+1

vj − h(Bj)

vi − h(Bj−1)
≤ vm − z
vm − h(Bm)

vi − h(Bi−1)

vi − z
. (11)

Proof. For bidder i = 1, . . . , n−1, andm = i+1, . . . , n consider a unilateral deviation z ∈ [h(Bm−1), h(Bm)]
of bidder i. Then by the definition of a mixed Nash Equilibrium, Definition 1, it holds that

E
b−i∼B−i

[ui(z,b−i)] ≤ E
b∼B

[ui(b)]⇔ Fαm(z)(vi − z) .

By substituting the appropriate branches of Fα of Equation (8) the first inequality follow. The reasoning is
identical for the second inequality, although this time a bidder i = 2, . . . , n examines a deviation to a lower
interval m = 1, . . . , i− 1.

Lemma 41. Consider a value profile (v,d) and any inefficient mixed Nash Equilibrium B with a setW (B)
that consists only of additive or unit-demand bidders. The expected social welfare is

SW (B) = kvα − (k − n)(vα − `(Bα))
n∑
i=1

n∏
j=i+1

(
vj − h(Bj)

vj − h(Bj−1)

)∫ h(Bi)

h(Bi−1)

vi − h(Bi)

vi − z
vα − vi

(va − z)2
dz .

(12)

Proof of Theorem 31. For brevity we denote `(Ba) as ` and, for j = 1, . . . , n, we denote h(Bj) as hj .
Moreover, by assumption va ≥ vn. To simplify calculations, we assume that va = 1 by rescaling all values
in the instance.

Given a mixed Nash equilibrium B we lower bound the expected social welfare SW (B) described in
Equation (12) as

SW (B) = k − (k − n)(1− `)
n∑
i=1

n∏
j=i+1

(
vj − hj
vj − hj−1

)∫ hi

hi−1

vi − hi
vi − z

1− vi
(1− z)2

dz

= k − (k − n)(1− `)
n∑
i=1

n∏
j=i+1

(
vj − hj
vj − hj−1

)(∫ hi

hi−1

vi − hi
vi − z

1

(1− z)
dz −

∫ hi

hi−1

vi − hi
(1− z)2

dz

)

16



> k − (k − n)(1− `)
n∑
i=1

n∏
j=i+1

(
vj − hj
vj − hj−1

)∫ hi

hi−1

vi − hi
vi − z

1

(1− z)
dz

≥ k − (k − n)(1− `)
∫ hn

`

vn − hn
(vn − z)(1− z)

dz ≥ k − (k − n)(1− `)
∫ hn

`

1− hn
(1− z)2

dz

≥ k − (k − n)(1− `) = k − (k − n)(hn − `) = k − (k − n)
(n
k

(1− `)
)
≥ k − (k − n)

(n
k

)
≥ 3

4
k .

The first inequality is due to the fact that for all bidders i = 1, . . . , n, it holds that vi > hi by Observation 16.
The second is an application of the mixed Nash equilibrium property encoded by Equation (11) of Lemma
40. The next two inequalities occur by observing that the respective functions are increasing in terms of vn
(which, by assumption, we upper bound with vn ≤ 1) and ` (which we lower bound with ` ≥ 0). The last
inequality follows by setting x = n

k and minimizing the function s(x) = 1 − x + x2 for x ∈ (0, 1). The
theorem follows by observing that the optimal welfare is k, since the additive bidder has the highest value.

�

5 A Separation Result between Mixed and Bayesian Price of Anarchy

In this section we move away from mixed Nash equilibria and explore the more general solution concept of
the Bayes Nash equilibrium. We consider the following incomplete information setting. Let (vi, di) be the
type of bidder i ∈ N . We suppose that the private value vi of a bidder i ∈ N is drawn independently from
a distribution Vi. The second part of bidder i’s type is his demand di; for the purposes of this section (we
only construct a lower bound instance), we assume di to be deterministic private information.

Each bidder i is aware of her own value per unit vi and the product distribution ×jVj and decides a
strategy (bi, qi) ∼ Gi(vi) for each value vi ∼ Vi. The bidding strategy is in general a mixed strategy. In the
special case that bidder i chooses a single bid (bi(vi), qi) for each drawn value vi, he submits a pure strategy,
where qi is not necessarily di.

Definition 42. Given V = ×ni=1Vi and d, a profile G(v) is a Bayes Nash Equilibrium if for all i ∈ N , vi
in Vi’s domain, b′i ≥ 0 and q′i ∈ Z+ it holds that

E
v−i∼V−i

[
E

(b,q)∼G(v)
[uvii (b,q)]

]
≥ E

v−i∼V−i

[
E

(b−i,q−i)∼G−i(v−i)

[
uvii ((b′i, q

′
i), (b−i,q−i))

]]
, (13)

where uvii (·) stands for bidder i’s utility when his value is vi.

We can define the Bayesian Price of Anarchy in the same way as before, where now we compare against
the expected optimal welfare, over the value distributions.

Although in a few other auction formats, the inefficiency does not get worse when one moves to incom-
plete information games, we exhibit that this is not the case here. We present a lower bound on the Bayesian
Price of Anarchy of 1.1204, with two bidders. For mixed equilibria and two bidders, Theorem 25 showed
that the Price of Anarchy is at most 1.1095. Although this difference is small, it shows that the Bayesian
model is more expressive and can thus create more inefficiency. In particular, we stress that the bound ob-
tained here for two bidders is inspired by the same bound of 1.1204 for mixed equilibria in Theorem 30
where we had to use a large number of bidders.

Theorem 43. For n = 2, k ≥ 2, and capped additive valuation profiles, the Price of Anarchy of Bayes Nash
equilibria is at least 1.1204.
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Remark 44. When k = 1, there is a lower bound of 1.15 in [13] for the first price auction. However this
requires a very large number of bidders. With k = 1 and two bidders, there is a simpler construction in [21]
but it only yields a lower bound of 1.06.
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A Missing proofs from Section 3.1

Proof of Lemma 4. We use first the following auxiliary lemma.

Lemma 45. Let G be any mixed Nash equilibrium where there exists a bidder i such that Pr[bi = vi, qi <
di] > 0 for (b,q) ∼ G. Let G′i be the same as Gi after replacing any qi < di with di. Then G′ is also a
mixed Nash equilibrium with the same social welfare.

Proof. First note that E(b,q)∼G[ui(b,q)] = 0, since bidder i bids vi with positive probability that results

in zero utility (see also Lemma 11). Let βk−i be the random variable expressing the kth maximum payment
under G−i. Then Pr[βk−i < vi] = 0, because if βk−i takes a value less than vi with positive probability,
bidder i has an incentive to deviate to a bid less than vi and receive positive utility.

For any bidder j, with vj > vi, and any bidding profile (b,q) ∼ G, such that xi(b,q) > 0 and
xj(b,q) < qj , it holds that bj ≤ bi = vi (apart maybe from cases that appear with zero probability).
Then, Pr[xi(b,q] > 0, xj(b,q) < qj) = 0, otherwise there exists a sufficiently small ε > 0, such that
bidder j has an incentive to deviate to vi + ε and receive more units. Therefore, if bidders i and j bid
both vi with positive probability the tie-breaking rule is in favour of player j. The same tie-breaking rule
should be applied when bidder i increases his quantity bid and so, for any bidding profile (b,q) ∼ G,
xj(b,q) = xj(b, (di,q−i)).

For any bidder j, with vj ≤ vi, bidder j cannot get any unit by paying less that vi since Pr[βk−i < vi] =
0. Therefore bidder j may receive units with positive probability only if vj = vi and his expected utility is
zero.

Overall, if bidder i deviates from Gi to G′i, either the allocation of the players remains the same (so
they still have no incentive to deviate) or they have zero utility (and still no incentive to deviate) and the
allocation may change between bidders of the same valuation; so the expected social welfare remains the
same and the new strategy profile is a mixed Nash equilibrium.

We continue now with the proof of Lemma 4. Starting by G, we recursively show that if one by one the
bidders deviate toG′i, the bidding profile remains an equilibrium with the same social welfare. It is sufficient
to show this for (G′i,G−i).

First note that, according to the tie-breaking rule, if i deviates from Gi to G′i, he can only get more units
as he only declares the same or more demand. Let Si be the set of bids (bi, qi) such that qi < di and

E
(b−i,q−i)∼G−i

[xi((bi,b−i), (qi,q−i))] < E
(b−i,q−i)∼G−i

[xi((bi,b−i), (di,q−i))]

It should be that for (b,q) ∼ G, Pr[(bi, qi) ∈ Si, bi < vi] = 0, otherwise bidder i would increase her
utility by deviating from (bi, qi) ∈ Si to (bi, di). So, the only case that bidder i may increase his allocation
by increasing his demand to di is when he bids his value, in which case the lemma follows by Lemma 45.

So far we have shown that for any bid (bi, qi) such that qi < di and bi < vi the expected allocation to
bidder i remains the same if he deviates to (bi, di), apart maybe from cases that appear with zero probability.
It remains to show that under (G′i,G−i) the allocation to all bidders remains the same. Note that i deviating
from Gi to G′i can only cause other bidders to be allocated less or the same number of units due to the tie
breaking rule. Given any (bi, qi) ∼ Gi with qi < di, let S−i(bi, qi) = S−i be the set of bidding profiles
(b−i,q−i) ∼ G−i such that there exists a bidder j 6= i, receiving less units by the deviation of i, i.e.,
xj(b,q) > xj(b, (di,q−i)), where b = (bi,b−i), and q = (qi,q−i).

For the sake of contradiction suppose that, under G−i, Pr[(b−i,q−i) ∈ S−i] > 0. By summing over
all bidders but i and taking the expectation over G−i, we have that

E
(b−i,q−i)∼G−i

[
∑
j 6=i

xj(b,q)] > E
(b−i,q−i)∼G−i

[
∑
j 6=i

xj(b, (di,q−i))] .
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This means that E(b−i,q−i)∼G−i [xi(b,q)] < E(b−i,q−i)∼G−i [xi(b, (di,q−i))] which leads to a contradic-
tion.

�

Proof of Lemma 5. The proof is established by the following two lemmas.

Lemma 46. For any Nash equilibrium G where nobody declares less demand, if Pr[xi(b,q) > di] > 0
for (b,q) ∼ G, then E[bi | xi(b,q) > di] = 0.

Proof. Suppose on the contrary that E[bi | xi(b,q) > di] > 0. We will show that bidder i has an incentive
to declare her true demand instead of a higher demand.

E[ui(b,q)] = Pr[xi(b,q) > di]E[ui(b,q) | xi(b,q) > di] + Pr[xi(b,q) ≤ di]E[ui(b,q) | xi(b,q) ≤ di]
= Pr[xi(b,q) > di]E[di(vi − bi)− (xi(b,q)− di)bi | xi(b,q) > di]

+Pr[xi(b,q) ≤ di]E[xi(b,q)(vi − bi) | xi(b,q) ≤ di]
= Pr[xi(b,q) > di]E[di(vi − bi) | xi(b,q) > di]

+Pr[xi(b,q) ≤ di]E[xi(b,q)(vi − bi) | xi(b,q) ≤ di]
−Pr[xi(b,q) > di]E[(xi(b,q)− di)bi | xi(b,q) > di]

= E[ui(b, di,q−i)]− Pr[xi(b,q) > di]E[(xi(b,q)− di)bi | xi(b,q) > di]

≤ E[ui(b, di,q−i)]− Pr[xi(b,q) > di]E[bi | xi(b,q) > di]

< E[ui(b, di,q−i)] ,

where the last strict inequality is due to our assumption that E[bi | xi(b,q) > di] > 0. The lemma follows
by contradiction.

Lemma 47. If
∑

i di > k then in any Nash equilibrium G where nobody declares less demand, Pr[xi(b,q) >
di] = 0 for all i where (b,q) ∼ G.

Proof. Suppose on the contrary that there exists a bidder i such that Pr[xi(b,q) > di] > 0. Then there
is also a bidder j such that Pr[xi(b,q) > di, xj(b,q) < dj ] > 0, otherwise Pr[xj(b,q) ≥ dj ,∀j] = 1
which contradicts the fact that

∑
i di > k.

Given that xi(b,q) > di and xj(b,q) < dj , bidder j bids 0 (apart maybe for cases that appear with
zero probability), otherwise he should have received more units and bidder i less units since by Lemma 46,
bidder i bids 0 and receives at least one unit. Then the expected utility of bidder j can be expressed as:

E[uj(b,q)] = Pr[xi(b,q) > di, xj(b,q) < dj ]E[xj(b,q)(vj − bj) | xi(b,q) > di, xj(b,q) < dj ]

+(1− Pr[xi(b,q) > di, xj(b,q) < dj ])E[uj(b,q) | xi(b,q) ≤ di or xj(b,q) ≥ dj ]
≤ Pr[xi(b,q) > di, xj(b,q) < dj ]E[xj(b,q)vj | xi(b,q) > di, xj(b,q) < dj ]

+(1− Pr[xi(b,q) > di, xj(b,q) < dj ])E[uj(b,q) | xi(b,q) ≤ di or xj(b,q) ≥ dj ] .

Consider now the bidding strategy (b′j , qj) where b′j = ε > 0 when bj = 0 and b′j = bj otherwise, for
some ε < Pr[xi(b,q) > di, xj(b,q) < dj ]vj/k. If bidder j deviates to this strategy he should receive at
least one more unit since he would bid more than bidder i and his expected utility would be:
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E[uj(b
′
j ,b−j ,q)] = Pr[xi(b,q) > di, xj(b,q) < dj ]E[xj(b

′
j ,b−j ,q)(vj − b′j) | xi(b,q) > di, xj(b,q) < dj ]

+(1− Pr[xi(b,q) > di, xj(b,q) < dj ])E[uj(b
′
j ,b−j ,q) | xi(b,q) ≤ di or xj(b,q) ≥ dj ]

≥ Pr[xi(b,q) > di, xj(b,q) < dj ]E[(xj(b,q) + 1)(vj − ε) | xi(b,q) > di, xj(b,q) < dj ]

+(1− Pr[xi(b,q) > di, xj(b,q) < dj ])E[uj(b,q)− kε | xi(b,q) ≤ di or xj(b,q) ≥ dj ]
≥ E[uj(b,q)] + Pr[xi(b,q) > di, xj(b,q) < dj ](vj − djε)
−(1− Pr[xi(b,q) > di, xj(b,q) < dj ])kε

≥ E[ui(b,q)] + Pr[xi(b,q) > di, xj(b,q) < dj ]vj − kε
> E[ui(b,q)] ,

where the strict inequality comes from the definition of ε. This leads to a contradiction that concludes the
proof.

�

Proof of Lemma 6. If
∑

i di ≤ k, the optimum allocation appears when every bidder with positive valuation
receives a number of units more or equal to their true demand.

For the sake of contradiction suppose that there exists a Nash equilibrium G and a bidder i such that
Pr[xi(b,q) < di] > 0 for (b,q) ∼ G. Since nobody bids less than their true demand, bidder i receives
less units than di only because there are either bidders bidding more than their true demand or bidders with
zero valuation receive units (or both). By Lemma 46, we have that Pr[maxj 6=i:xj(b,q)>dj bi = 0] = 0 and
the expected utility of bidder i can be expressed as follows:

E[ui(b,q)] = Pr[xi(b,q) < di]E[xi(b,q)(vi − bi) | xi(b,q) < di, max
j 6=i,xj(b,q)>dj

bj = 0]

+Pr[xi(b,q) ≥ di]E[divi − xi(b,q)bi | xi(b,q) ≥ di]
≤ Pr[xi(b,q) < di]E[(di − 1)vi | xi(b,q) < di, max

j 6=i,xj(b,q)>dj
bj = 0]

+Pr[xi(b,q) ≥ di]E[divi − xi(b,q)bi | xi(b,q) ≥ di] ,

where the inequality is due to the fact that in the first term xi(b,q) ≤ di − 1; further note that in the first
term bidder i loses units where the maximum of the other bids is 0, so he should have bid 0.

Consider now the bidding strategy (b′i, qi) where b′i = ε > 0 when bi = 0 and b′i = bi otherwise, for
some ε < Pr[xi(b,q) < di]vi/k. Then the expected utility of bidder i after deviating to this strategy is:

E[ui(b
′
i,b−i,q)] = Pr[xi(b,q) < di]E[xi(b

′
i,b−i,q)(vi − b′i) | xi(b,q) < di, max

j 6=i,xj(b,q)>dj
bj = 0]

+Pr[xi(b,q) ≥ di]E[divi − xi(b′i,b−i,q)b′i | xi(b,q) ≥ di]
≥ Pr[xi(b,q) < di]E[di(vi − ε) | xi(b,q) < di, max

j 6=i,xj(b,q)>dj
bj = 0]

+Pr[xi(b,q) ≥ di]E[divi − xi(b,q)(bi + ε) | xi(b,q) ≥ di]
≥ E[ui(b,q)] + Pr[xi(b,q) < di](vi − diε)− Pr[xi(b,q) ≥ di]kε
≥ E[ui(b,q)] + Pr[xi(b,q) < di]vi − kε
> E[ui(b,q)] ,

where the strict inequality comes from the definition of ε. This leads to a contradiction that concludes the
proof. �
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B Missing proofs from Section 3.2

Proof of Lemma 9. Let i be such a bidder. Since i receives at least one unit with positive probability,
it holds that Pr[xi(b) > 0] > 0 for b ∼ B. There is only one possible case so that bidder i has zero
expected utility and this is that he bids his valuation when he receives at least one unit (or more accurately,
the probability that he bids less than his value and receives at least one unit is zero).

First note that the payment for any unit is at least vi (apart maybe from cases that appear with zero
probability), otherwise bidder i has an incentive to bid less than vi and get a positive utility. For any bidder
j with vj > vi, Pr[xi(b) > 0, xj(b) < dj ] = 0, otherwise there exists a sufficiently small ε > 0, such that
bidder j has an incentive to deviate from vi to vi + ε and receive more units. Therefore, it holds that

Pr[xj(b) = dj , ∀j with vj > vi | xi(b) > 0] = 1,

and since Pr[xi(b) > 0] > 0 it holds that

Pr[xj(b) = dj , ∀j with vj > vi] > 0.

Since there are allocations where all bidders with higher valuation that vi receive their demand, it is
∑

j:vj>vi
dj <

k. Moreover, whenever bidders with valuation at most vi receive units (these bidders must have zero ex-
pected utility since the lower payment is vi), those bidders with valuation higher than vi receive their de-
mand. Overall, bidders with valuation higher than vi receive their demand with probability 1. The rest of
the units are given to bidders with valuation vi (because the payment is at least vi) which leads to optimal
social welfare. �

Proof of Lemma 10. Suppose on the contrary that there exists only a single bidder i with Eb∼B[ui(b)] > 0
and for any other bidder j 6= i, Eb∼B[uj(b)] = 0. By Lemma 9, Eb∼B[xj(b)] = 0, for all j 6= i and
therefore, Eb∼B[xi(b)] = k. Moreover, since B is inefficient there exists a bidder i′ 6= i with vi′ > vi.
Since i has a positive expected utility, he receives the units in a price less than vi. If bidder i′ bids vi, he can
satisfy his demand which results in a positive expected utility leading to a contradiction. �

Proof of Observation 12. First note that z < vi, otherwise, by Fact 11, Eb∼B[ui(b)] = 0 and i /∈ W (B)
which is a contradiction. The same holds for bidder j.

Since it cannot be the case that the tie-breaking rule always favors both bidders, either bidder i or bidder
j (or both) can find a small enough δ so that transferring all the mass from z to z+δ will yield higher utility.
�

Proof of Theorem 13. If z is a mass point for bidder i, then we are done by Fact 11. If not, then consider
an interval I ⊆ Supp(Bi) with z ∈ I where nobody has a mass point in it (recall that the other bidders have
no mass point on z, so such I exists). We analyze first the expected utility of a bidder i, given that she bids
in I:

E
b∼B

[ui(b) | bi ∈ I] = E
bi∼Bi

[ E
b−i∼B−i

[ui(bi,b−i)] | bi ∈ I]

=

∫
z∈I

fbi|bi∈I(z) E
b−i∼B−i

[ui(z,b−i)]dz

=
1

Pr[bi ∈ I]

∫
z∈I

fi(z) E
b−i∼B−i

[ui(z,b−i)]dz (14)

where fi is the pdf of Bi, and fbi|bi∈I is the conditional pdf when bi ∈ I . Note that for all z ∈ I it holds that
fi(z) ≥ 0 and fi is continuous. Since no bidder has a mass point in I , by Fact 7 and Remark 8 it holds that
Eb−i∼B−i [ui(z,b−i)] is also continuous in I as a function of z.

We now use a standard fact from calculus, commonly referred to as the integral version of the mean
value theorem.
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Fact 48. Let f, g be continuous functions on [a, b] such that f is non-negative. Then there exists a c ∈ [a, b]
such that ∫ b

a
f(x)g(x)dx = g(c)

∫ b

a
f(x)dx.

Using this fact, we get that there exists ξ ∈ I , so that we can write Equation (14) as

E
b∼B

[ui(b) | bi ∈ I] = E
b−i∼B−i

[ui(ξ,b−i)]

∫
z∈I fi(z)dz

Pr[bi ∈ I]
= E

b−i∼B−i
[ui(ξ,b−i)]

Let u = Eb∼B[ui(b)]. By Fact 11, what we have established so far is that there exists a ξ ∈ I for which

E
b−i∼B−i

[ui(ξ,b−i)] = u.

Consider now making the interval I smaller and smaller, by taking a sequence I1, I2, . . . such that in
the limit, Ik collapses to z as k → ∞. By the previous arguments, for every Ik, there exists a ξk such that
Eb−i∼B−i [ui(ξk,b−i)] = u. In the limit, ξk → z and we obtain that Eb−i∼B−i [ui(z,b−i)] = u. �

C Missing proofs from Section 3.3

Proof of Lemma 17. Suppose for contradiction that i is a non-empty-handed bidder, and there exists a
bidder j ∈W (B) \ {i} (non-empty-handed or not), such that h(Bj) > h(Bi). Since j ∈W (B), it must be
that vj ≥ h(Bj) and bidder j obtains positive utility when she bids in Supp(Bj)∩(h(Bi), h(Bj)] (otherwise
j would have an incentive not to bid above h(Bi)). Moreover, Eb∼B[xj(b) | bi ∈ (h(Bi), h(Bj)]] = dj ,
since outbidding a non-empty-handed bidder guarantees the allocation of a bidder’s entire demand by the
auction. However, bidder j can then benefit from transferring probability mass from (h(Bi), h(Bj)] to
a point h(Bi) + δ, for some small enough δ > 0, since it still guarantees the allocation of her entire
demand but for a strictly better price and thus strictly better expected utility. Hence, we have proved that
h(Bj) ≤ h(Bi).

We will now also prove that h(Bi) ≤ maxj∈W (B)\{i} h(Bj). Consider a bidder j ∈ W (B) \ {i}. If j
is also non-empty-handed, then we can just repeat the argument above by switching the places of i and j,
and we are done. Otherwise, i is the only non-empty-handed bidder and suppose h(Bi) > h(Bj) for every
j ∈W (B) \ {i}. Then, whenever bidder i bids above every h(Bj), she ranks first, and hence she is granted
all her demand. But then, she has incentives to reduce her bid so that she is still above every h(Bj) and win
the same units at a lower price, which is a contradiction. So, h(Bi) = h(BW\{i}). Then it is straightforward
to see that h(BW\{i}) = h(BW ). �

Proof of Lemma 18. Fix a bidder i and let I ⊆ Supp(Bi) be any interval such that I *
⋃
j∈W (B)\{i} Supp(Bj).

We distinguish two cases: either I = [`, h] for ` < h, or I is an isolated point.
For the first case we can establish that i would have an incentive to bid only on ` and still win the same

units at a lower price. Indeed,

E
b∼B

[ui(b) | bi ∈ I] = E
b∼B

[xi(bi,b−i)(vi − bi) | bi ∈ I]

= E
b∼B

[xi(`,b−i)(vi − bi) | bi ∈ I]

< E
b−i∼B−i

[xi(`,b−i)(vi − `)]
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The second equality is due to the fact that no other bidder in W (B) bids in I with positive probability,
whereas the strict inequality follows by the construction of I . This inequality yields a contradiction, by Fact
11, since there exists a profitable transfer of the probability mass of I to the point `.

For the second case suppose that I is some isolated point z that i bids with positive probability; z
is isolated because we have assumed WLOG that all intervals defining the domain of a distribution are
closed. Let h = maxj∈W (B)\{i} h(Bj). If z > h, then i would be benefited by transferring the probability
of bidding z to any point between h and z. If z < h, let z′ be the maximum point such that [z, z′) *⋃
j∈W (B)\{i} Supp(Bj) (note that z 6= z′). Then, there exists a bidder i′ 6= i such that, by Theorem 13,

Eb−i′∼B−i′ [ui′(z
′,b−i′)] = Eb∼B[ui′(b)]. Bidding any bid between z and z′ would result to a higher

expected utility for bidder i′ than Eb−i′∼B−i′ [ui′(z
′,b−i′)], which is a contradiction to the fact that B is a

Nash equilibrium. �

Proof of Lemma 19. Regarding the first part of the statement, suppose, for contradiction, that there exists a
bidder i ∈ W (b), and a point z ∈ Supp(Bi) \ {`(BW )} with Fi(z) > limz→z− Fi(z). By Observation 12
there exists no other bidder j ∈ W (B) \ {i} who also bids z with positive probability. We next distinguish
the following cases:
Case 1: There does not exist any bidder j ∈ W (B \ {i}) with an interval I = [z − δ, z] ⊂ Supp(Bj)
for some small enough δ > 0. Then by Lemma 18 it must also be that the interval [z − δ, z) is not in the
support of bidder i. Furthermore, I is not in the support of any other bidder, who do not belong to W (B)
(since z 6= `(BW ), bidders not in W (B) cannot use an interval of this form, because then they would have
a positive probability of winning). Thus, bidder i could just choose a bid ξ ∈ I with ξ < z and win the same
units as when bidding z at a lower price, which is a contradiction of B being an equilibrium.
Case 2: There exists a bidder j ∈ W (B \ {i}) with an interval I = [z − δ, z] ⊂ Supp(Bj) for some small
enough δ > 0. But then

E
b∼B

[uj(bj ,b−j) | bj ∈ [z − δ, z]] = E
bj∼Bj

[ E
b−j∼B−j

[uj(bj ,b−j)] | bj ∈ [z − δ, z]]

= lim
ξ→z−

E
b−j∼B−j

[uj(ξ,b−j)]

= lim
ξ→z−

E
b−j∼B−j

[xj(ξ,b−j)] lim
ξ→z

(vj − ξ)

= dj lim
ξ→z−

F̂ avgj (ξ)(vj − z)

< dj lim
ξ→z+

F̂ avgj (ξ)(vj − z)

The last equality in the above expressions is by Fact 7. The last inequality holds because F̂ avgj has a
discontinuity at z due to the fact that i assigns positive probability to z.

To conclude, the above series of equations imply that there exists a small enough ε such that

E
b∼B

[uj(bj ,b−j) | bj ∈ [z − δ, z]] < E
b−j∼B−j

[uj(z + ε,b−j)]

which contradicts B being an equilibrium.
Regarding the second part of the statement, by Observation 12 it cannot be that two bidders have a mass

point on `(BW ). For the sake of contradiction, suppose that there exists a bidder iwith Pr[bi = `(BW )] > 0
and i is not a non-empty-handed bidder. Then, the rest of the bidders in W (B) bid higher than `(BW )
with probability one and therefore, bidder i doesn’t win any unit by bidding `(BW ). By Theorem 13,
Eb∼B[ui(b)] = Eb−i∼B−i [ui(`(BW ),b−i)] = 0, which contradicts the fact that i ∈W (B). �

Proof of Corollary 23. Suppose for contradiction that there exists an interval (`′, h′) 6⊆
⋃
j∈W (B)\{i} Supp(Bj)

with `′ > `(BW ), h′ < h(BW ) and this is maximal. Then, let i be a bidder with h′ in their support. By
Theorem 22, F̂ avgi (h′) = ui

di(vi−h′) and Eb∼B[ui(b)] = Eb−i∼B−i [ui(h
′,b−i)] = ui by Corollary 20.
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For any x ∈ (`′, h′), F̂ avgi (x) = ui
di(vi−h′) , since (`′, h′) 6⊆

⋃
j∈W (B)\{i} Supp(Bj). Clearly, F̂ avgi (x) >

ui
di(vi−x) and by bidding x,

E
b−i∼B−i

[ui(x,b−i)] = diF̂
avg
i (x)(vi − x) > di

ui
di(vi − x)

(vi − x) = ui = E
b∼B

[ui(b)] ,

which is a contradiction to B being an equilibrium. �

D Missing proofs from Section 4.1

Proof of Lemma 26. To prove the first statement, by Lemma 18, we have that Supp(B1) = Supp(B2).
Also, by Corollary 23, we have that Supp(B1) is an interval. To prove that `(B1) = 0, we utilize Lemma 10
which states that |W (B)| ≥ 2. Thus, with exactly two bidders, we have that |W (B)| = 2, and both bidders
have positive expected utility. Let ` = `(B1) = `(B2). If ` > 0, we will argue that one of the players has
an incentive to deviate to a lower bid.

Note first that by Observation 12, it cannot be that ` is a mass point for both bidders. WLOG suppose
that bidder 1 has a mass point at `, which by Fact 11, implies she has a positive expected utility, when
playing `. At the same time, bidder 2 bids higher than ` with probability equal to 1. Hence, there must be
some left over units that bidder 1 wins when bidding ` in order to have a positive expected utility. But now
this means that bidder 1 would have a profitable transfer of probability mass to 0 in order to have a zero
payment while obtaining the same number of units. If neither bidder has mass on `, we can use Corollary
20 to have that the expected utility of bidder 1 at ` equals E[u1(b)] > 0. Hence, she wins some units with
positive probability when bidding `. But then bidder 1 would win the same number of units by bidding 0
resulting in higher utility, a contradiction to B being an equilibrium.

To prove the second statement of the lemma, we use Theorem 14 that states that at least one of the
bidders, say bidder i, is non-empty-handed and by Lemma 24 we obtain

h(Bi) = vi
d1 + d2 − k

di
.

�

Proof of Lemma 29. Given i, as specified by the statement of the lemma, the definition of the average
distribution of winning bids for the other bidder (denoted as bidder −i), and Equation (4) yield

F̂ avg−i (z) =

∑d−i
m=1 F̂−i,m(z)

d−i
=
k − di + (d1 + d2 − k)Fi(z)

d−i
=
v−i − hi(Bi)
v−i − z

(15)

for all z ∈ [`(Bi), h(Bi)]. Therefore, we can have the following series of implications for the expected
welfare.
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E
b

[x1(b)v1 + x2(b)v2] = E
b

[x−i(b)(v−i − vi) + kvi]

= (v−i − vi) E
b−i

[
E
bi

[x−i(bi, b−i)]

]
+ kvi

= d−i(v−i − vi) E
b−i

[
F̂ avg−i (b−i)

]
+ kvi

= d−i(v−i − vi) E
b−i

[
v−i − hi(Bi)
v−i − b−i

]
+ kvi

= d−i(v−i − vi)
∫ h(Bi)

0
f−i(z)

v−i − hi(Bi)
v−i − z

dz + kvi

= d−i(v−i − vi)

(
1−

∫ h(Bi)

0
F−i(z)

v−i − h(Bi)

(v−i − z)2
dz

)
+ kvi.

The first equality is by observing that xi(b) = k − x−i(b). The third equality follows by Fact 7 whereas
the fourth equality is due to Equation (15). The expectation over b−i is then replaced by the integral, since
only bidder i could have a mass point. The remaining implications are due to integration by parts, and the
proof can be completed by substituting in the last equation the CDF F−i, given by (4). �

Full Proof of Theorem 25. The properties established so far imply a full characterization of instances that
have inefficient equilibria. To establish Theorem 25, we will group instances into three appropriate classes
and we will solve an appropriately defined optimization problem that approximates the Price of Anarchy for
each subclass to arbitrary precision.

WLOG, suppose we are given a value profile (v,d) = ((v1, d1), (v2, d2)) of k units such that d1 ≥ d2.
We define the following two quantities, which we refer to as the normalized demands.

d̄1 =
d1

k
> 0 d̄2 =

d2

k
> 0 (16)

Essentially, we intend to use v1, v2, d̄1 and d̄2 as the variables of the optimization problem mentioned before.
Let B be any inefficient mixed Nash equilibrium. With a slight abuse of notation we view the term

h(Bi) as a function of the valuation profile parameters, as established by Lemma 26, and define the functions
hi(v, d̄) = vi

d̄1+d̄2−1
d̄i

for i = 1, 2. We pair these functions with two additional expressions SWi(v,d) for
i = 1, 2 which are (scaled) restatements of the social welfare of an equilibrium (as stated in Lemma 29),
solely in terms of the value profile (v,d) and k, and without dependencies on the underlying equilibrium
distributions. The reason we are able to do so, is Theorem 27, which tells us what the CDFs are, in terms of
the valuation profile. The exact form of SWi(v1, v2, d̄1, d̄2) for i = 1, 2 is

SWi(v, d̄) = d̄−i(v−i−vi)

(
1−

∫ hi(v,d̄)

0

1

d̄1 + d̄2 − 1

(
d̄i(vi − hi(v, d̄))

vi − z
− (1− d̄−i)

)
v−i − hi(v, d̄)

(v−i − z)2
dz

)
+vi.

To continue, let i be a non-empty handed bidder with a mass point at 0 or if no such bidder exists, let i be
any non-empty-handed bidder. Then,

kSWi(v, d̄) = SW (B). (17)

To proceed, we will distinguish the following two cases.
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1. If B = (B1, B2) is such that Supp(B1) = Supp(B2) = [0, v1
d1+d2−k

d1
], then, by Equation (17),

SW (B) = kSW1(v, d̄) and by the second part of Theorem 27 it must be that v2v1 ≥
d2
d1

or, equiva-

lently, in terms of normalized demands as v2
v1
≥ d̄2

d̄1
. We split the analysis into the following sub-cases:

(a) When v1 > v2, the optimal social welfare is determined by allocating bidder 1 her entire demand
and, subsequently allocating bidder 2 the leftover units. Therefore, in this case OPT (v,d) =

v1d1 + (k− d1)v2 = k(v1d̄1 + (1− d̄1)v2) and OPT (B)
SW (B) = v1d̄1+(1−d̄1)v2

SW1(v1,v2,d̄1,d̄2)
. Hence, the Price of

Anarchy of mixed Nash equilibria for this subclass is upper bounded by the optimal solution to
the following problem

max
v1,v2,d̄1,d̄2

v1d̄1 + (1− d̄1)v2

SW1(v1, v2, d̄1, d̄2)

subject to 1 >
v2

v1
≥ d̄2

d̄1
.

(18)

(b) Similarly, when v1 < v2 the optimal social welfare is determined by allocating bidder 2 her
entire demand and, subsequently allocating bidder 1 the leftover units. Therefore, in this case
OPT (B) = v1(k − d2) + d2v2 = k(v1(1 − d̄2) + v2d̄2) and the Price of Anarchy for this
subclass is upper bounded by the optimal solution to the following problem

max
v1,v2,d̄1,d̄2

v1(1− d̄2) + v2d̄2

SW1(v1, v2, d̄1, d̄2)

subject to v2 > v1.

d̄1 ≥ d̄2 .

1 > d̄2 .

(19)

Note that in this sub-case, we enforce the last constraint that d̄2 < 1 (implicitly enforced in
the first sub-case). Since we assumed d1 ≥ d2, there can be no mixed Nash equilibrium with
d̄2 = 1, because then both bidders are additive, violating the condition of Theorem 14.

2. The final case we need to consider is equilibria B = (B1, B2) such that Supp(B1) = Supp(B2) =
[0, v2

d1+d2−k
d2

] when d1 < k (recall if d1 = k bidder 1 is non-empty-handed and the support will be as
in the first case). As in the previous case, by the second part of Theorem 27, it must be that v1v2 ≥

d1
d2

.
However, unlike the class of equilibria described in the previous paragraph, it is sufficient to consider
here only the case when v1 > v2 since, due to our assumption that d1 ≥ d2, the condition v1

v2
≥ d1

d2
implies that there cannot exist mixed Nash equilibria when v1 < v2. Thus, the Price of Anarchy for
this subclass is upper bounded by

max
v1,v2,d̄1,d̄2

v1d̄1 + (1− d̄1)v2

SW2(v1, v2, d̄1, d̄2)

subject to
v1

v2
≥ d̄1

d̄2
≥ 1

1 > d̄2 .

(20)
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By solving numerically the optimization problems of Equations (18), (19) and (20), we found out that
the worst case instances arise by the sub-case given by (18). In particular, the maximum value for the
objective function we obtained was approximately 1.1095 and the optimal values for the four variables are
v1 = 1, v2 ≈ 0.526, d̄1 = 1, d̄2 ≈ 0.357. This concludes the proof of the upper bound on the Price of
Anarchy. Furthermore, it is not hard to convert the variables to the underlying worst case instance, which
we present in the next paragraph.

Tight Example. Consider an instance of the discriminatory auction for k ≥ 2 units and n = 2 bidders.
Bidder 1 has value v1 = 1 and d1 = k, whereas bidder 2 has a value v2 = 0.526 and d2 = d0.357ke units.
Let B1, B2 be two distributions supported in [0, d2k ]. Note that v2 >

d2
k . In accordance to Equation (4), the

cumulative distribution functions of B1 and B2 are

F1(z) =
v2 − d2

k

v2 − z
F2(z) =

k − d2

d2

z

1− z
.

It is easy to verify that B = (B1, B2) is indeed a mixed equilibrium. The optimal allocation is for bidder 1
to obtain all k units and the expected social welfare of B can be easily derived using Lemma 29. The worst
case inefficiency ratio occurs as k grows and is approximately 1.1095. Therefore, the Price of Anarchy
bound described by the optimization problem of Equation (18) is tight and the proof is concluded. �

E Missing proofs from Section 4.2

Proof of Theorem 30. Consider a discriminatory auction instance of k ≥ 2 units. Let the number of bidders
be n+ 1: one additive bidder, denoted by α, that competes against n < k unit-demand bidders. We assume
that ties are in favor of bidder α. The value per unit of the additive bidder is 1, whereas the value of the i-th
unit-demand bidder is vi, for i = 1, . . . , n. The values of the unit-demand bidders are sorted in increasing
order, i.e. v1 ≤ v2 ≤ · · · ≤ vn and vn ≤ 1. For convenience, we define, for i = 0, . . . , n, the auxiliary terms
hi = i

k−n+i . Moreover, we will later choose the values so that they satisfy the following set of inequalities:

1. For i = 1, . . . , n− 1, m = i+ 1, . . . , n, and every z ∈ [hm−1, hm]:

m−1∏
j=i+1

vj − hj
vj − hj−1

≥ vi − z
vi − hi

vm − hm−1

vm − z
. (21)

2. For i = 2, . . . , n, m = 1, . . . , i− 1, and every z ∈ [hm−1, hm]:

i−1∏
j=m+1

vj − hj
vj − hj−1

≤ vm − z
vm − hm

vi − hi−1

vi − z
. (22)

Let B be a product distribution. The additive bidder α bids according to a distribution Bα supported
in [0, hn] with the cumulative distribution function Fα. Fα is a branch function with n branches, where for
i = 1, . . . , n, the form of Fα at [hi−1, hi], denoted by F iα, is

Fα(z) = F iα(z) =

n∏
j=i+1

(
vj − hj
vj − hj−1

)
vi − hi
vi − z

.
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The distribution Bi of each unit-demand bidder i = 1, . . . , n, is supported in [hi−1, hi], and the form of
its CDF is

Fi(z) =
k − n
1− z

− (k − n+ i− 1)

We now show that this construction is indeed a mixed Nash equilibrium, with the following lemma.

Lemma 49. The profile B is an equilibrium, provided the values v1, . . . , vn satisfy Equations (21) and (22).

Proof. Firstly, when the additive bidder bids the rightmost point in her support hn = n
k , this grants her an

allocation of k (since she outbids all the unit-demand bidders) and an expected utility of k(1− n
k ) = k− n.

Therefore, bidding above hn is a dominated strategy for bidder α, since she would still win k units but will
be asked to pay more than hn = n

k . On the other hand for i = 1, . . . , n, bidding z ∈ [hi−1, hi), grants
bidder α an expected utility of

E
b−α∼B−α

[uα(z,b−a)|z ∈ [hi − 1, hi)] = (k − n+ i− 1 + Fi(z)) (1− z) = k − n.

Therefore, by taking the expectation over Bα on both sides of this equation, we obtain that Eb∼B [uα(b)] =
k − n and bidder α has no profitable unilateral deviation.

We now examine the incentives for unilateral deviations of the n unit-demand bidders. For each one
of the unit-demand bidders i = 1, . . . , n, their expected utility for bidding in the interval of their support
(hi−1, hi) is

E
b−i∼B−i

[ui(z,b−i)|z ∈ (hi−1, hi)] = F iα(z)(vi − z) =
n∏

j=i+1

(
vj − hj
vj − hj−1

)
(vi − hi)

and, by taking an expectation on both sides of the above equation, the expected utility of unit-demand bidder
i is

E
b∼B

[ui(b)] =

n∏
j=i+1

(
vj − hj
vj − hj−1

)
(vi − hi) .

Similarly to the additive bidder, no unit-demand bidder is willing to bid higher than hn, since, even though
this strategy will result in outbidding all other bidders and thus guaranteeing them their unit, it will result
in overpaying. Moreover, bidding 0 would result in losing to the additive bidder α since ties are in favor of
the additive bidder. Finally, no bidder would ever bid vi or above since such a deviation would result in a
non-positive expected utility.

To conclude the proof that this construction is a mixed Nash equilibrium, we need to examine whether
any unit-demand bidder i has an incentive to bid outside her support without exceeding hn. For i =
1, . . . , n − 1, suppose that the unit-demand bidder i is unilaterally deviating to a point z ∈ [hm−1, hm]
such that z < vi, and m ∈ {i+ 1, . . . , n}. But then, since the value vector is such that Equation (21) holds,
we have that

E
b−i∼B−i

[ui(z,b−i)] = Fmα (z)(vi − z) =
n∏

j=m+1

(
vj − hj
vj − hj−1

)
vm − hm
vm − z

(vi − z)

≤
n∏

j=i+1

(
vj − hj
vj − hj−1

)
(vi − hi) = E

b∼B
[ui(b)] .

Finally, for i = 2, . . . , n, consider the unilateral deviation of bidder i to an interval [hm−1, hm] for m ∈
{1, . . . , i− 1}. However, due to Equation (22) we once again obtain that

E
b−i∼B−i

[ui(z,b−i)] ≤ E
b∼B

[ui(b)] .

Hence, no unit-demand bidder has a unilateral deviation and B is a mixed Nash Equilibrium.
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Note that the welfare maximizing allocation is to assign all units to bidder α. Therefore the optimal
social welfare is k. To obtain the worst case instance, given a number of units k ≥ 2, and a number of unit-
demand bidders n < k, we need to specify a value vector v so that the expected social welfare is minimized
and Equations (21) and (22) hold. By Lemma 41, we can easily obtain the expression of the expected social
welfare (normalized by k) and, therefore, the optimization problem that yields the most inefficient auction
instance attainable with the above construction given a number of units k ≥ 2 and a number of unit-demand
bidders n < k is

min
v∈(0,1)

1− (1− n

k
)

n∑
i=1

n∏
j=i+1

(
vj − hj(n, k)

vj − hj−1(n, k)

)∫ hi(n,k)

hi−1(n,k)

vi − hi(n, k)

vi − z
1− vi

(1− z)2
dz

subject to hi(n, k) =
i

k − n+ i
, ∀i ∈ {0, . . . , n}

vi > hi(n, k), ∀i ∈ {0, . . . , n}
m−1∏
j=i+1

vj − hj
vj − hj−1

≥ vi − z
vi − hi

vm − hm−1

vm − z
, ∀i ∈ {1, . . . , n− 1},m ∈ {i+ 1, . . . , n},

z ∈ [hm−1(n, k), hm(n, k)]

i−1∏
j=m+1

vj − hj
vj − hj−1

≤ vm − z
vm − hm

vi − hi−1

vi − z
, ∀i ∈ {2, . . . , n},m ∈ {1, . . . , i− 1},

z ∈ [hm−1(n, k), hm(n, k)]

(23)

We were able to numerically solve a series of optimization problems of the above format given integers k, n
using global optimization routines of the scientific computing library Scipy of Python. We observed that the
worst case instances were those in which the ratio n

k ≈ 37%. For instance, when k = 10 and n = 4, the
above optimization problem yields 0.8941 and therefore the worst case ratio is 1/0.8941 ≈ 1.1184, which
is already higher than the Price of Anarchy attainable with two bidders that we have discussed in Section
4.1. If we increase the number of units further to, say, k = 100 and set n = 37, the optimization problem
yields approximately 0.8925 and therefore the worst case inefficiency becomes 1/0.8925 ≈ 1.1204. By
experimenting with very large values of k and n, the worst case inefficiency differs only in the 5th decimal
digit, hence we have a convergence to 1.1204, using n

k ≈ 0.3732.
�

Proof of Lemma 35. For the first statement, note that it cannot be the case that the set difference between
[`(BW ), h(BW )] and Supp(Bα) is a collection of isolated points, since the distributions utilize closed
intervals. Suppose now that there exists an interval I 6∈ Supp(Bα), with I ⊆ [`(BW ), h(BW )]. We can
choose I to be sufficiently small, so that there exists a bidder i ∈ W (B) \ {α} such that I ⊆ Supp(Bi).
This is feasible, since by Corollary 23 the union of the supports of bidders in W (B) \ {α} is an interval.
Assuming I = [`′, h′], where we can also enforce that `′ > `(BW ), we obtain

E
b∼B

[ui(b)] = E
b−i∼B−i

[ui(h
′,b−i)] = (vi − h′)diF̂ avgi (h′) = (vi − h′)diF̂ avgi (`′)

< E
b−i∼B−i

[ui(`
′,b−i)] = E

b∼B
[ui(b)].

The first and last equalities above are due to Corollary 20 (since `′ > `(BW )), the second equality holds
by Fact 7, and the third equality follows by Observation 34 and the fact that Fα(h′) = Fα(`′) (because
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I 6∈ Supp(Bα)) and therefore F̂ avgi (h′) = F̂ avgi (`′). The contradiction we get establishes the first statement
of the theorem.

To prove the second statement, suppose for contradiction that there exist two bidders i, j ∈W (B)\{α}
such that vi 6= vj and an interval I ⊆ Supp(Bi)∩Supp(Bj). By Theorem 22, we obtain F̂ avgi (z) = ui

di(vi−z)
and since again by Observation 34, F̂ avgi (z) = Fα(z), we conclude that Fα(z) = ui

di(vi−z) for z ∈ I .
Now for bidder j, and every z ∈ I we obtain

E
b−j∼B−j

[uj(z,b−i)] = djFα(z)(vj − z) = dj
ui

di(vi − z)
(vj − z).

The right hand side must be the same for all z ∈ I by Corollary 20. However, this is a contradiction since
this can only be true for an infinite set of values for z, only when vi = vj . �

Proof of Theorem 37. We first construct the value profile (v′,d′) and the product distribution B′. We then
argue that they follow the three properties in the statement of the theorem. Firstly, we construct the valuation
profile (v′,d′) by modifying the profile (v,d) as follows: we replace every bidder i ∈ W (B) \ {α} with
di unit-demand bidders, each of them having value vi. All other bidders (the additive bidder and the losing
bidders) retain their values and demands.

We construct the product distribution B′ from B as follows. We let bidders α and N \W (B) to bid as
before. This leaves us only the newly generated unit-demand bidders. These bidders use the same CDF, and
on the same support, as the bidder they were derived from. This completes the description of B′.

Now that we have defined B′ the first property follows easily by observing that the bidders with positive
expected utility are precisely all the newly generated unit-demand bidders as well as bidder α.

To see that B′ is an equilibrium, note that the losing bidders have no incentives to deviate, just as in
B. Since the CDF of bidder α has not changed, the unit-demand bidders have no incentive to deviate
because they face the same competition from α as the bidders in B. If there was a successful deviation by
a unit-demand bidder, this would directly translate to a deviation in B. The same is true for the additive
bidder since she also sees the same competition on average, and this does not affect the improvement of her
expected utility .

Finally, it is very easy to see that SW (B) = SW (B′), and also thatOPT (v,d) = OPT (v′,d′), which
establishes the last statement. �

Proof of Lemma 38. If B is such that no support intervals intersect for unit-demand bidders, we are done.
Otherwise, there exists an interval in which more than one unit-demand bidders bid. Let S ⊆WB \ {α} be
such a set of unit-demand bidders and let Ij =

⋃
i∈S Supp(Bi).

Consider the perspective of bidder α when she bids at Ij ∈ [L,R]. Her average CDF of winning bids
when bidding in Ij is by Theorem 22

F̂ avgα (z) =
Dj(vα−R)

k(vα − z)
.

Suppose that we partition the interval [L,R] to Dj −Dj − 1 disjoint subintervals and assign each bidder to
one of them. For i = 1, . . . , Dj −Dj−1, the CDF of bidder i will be such that the equation above remains
satisfied. This means that

Fi(z) =
(Dj)(va −R)

vα − z
− (k −Dj−1 − (i− 1)),

and for every two pi, pi+ 1 it must be that

(k − n+Dj−1 + i)(vα − pi) = (k − n+Dj−1 + i+ 1)(vα − pi+1)
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These points are clearly inside the interval [L,R].
We partition the interval Ij into |S| intervals. Then, we assign a unit demand bidder in S to bid in a

different subinterval with the CDF functionHs. Call this new product distributionB′. Similarly to Theorem
37, it is clear that the incentives of the small bidders remain unchanged since bidder α did not change their
distribution. The same is true for bidder α due to the transformation we defined above. This concludes the
proof. �

Proof of Lemma 41. For brevity we denote `(Ba) as ` and, for j = 1, . . . , n, we denote h(Bj) as hj .
We have that

SW (B) = E
bα∼Bα

[
E

b−α∼B−α

[
n∑
i=1

xi(b)vi

]]

= Fα(`)(k − n+

n∑
j=1

vj) +

n∑
i=1

∫ hi

hi−1

fαi(z)

Fi(z)(vα − vi) + vα(k − n+ i− 1) +

n∑
j=i

vj

 dz

= Fα(`)(k − n+

n∑
j=1

vj) +

n∑
i=1

∫ hi

hi−1

fαi(z)

Fi(z)(vα − vi) + vα(k − n+ i− 1) +

n∑
j=i

vj

 dz

= Fα(`)(k − n+
n∑
j=1

vj) +
n∑
i=1

∫ hi

hi−1

fαi(z)

k(vα − hn)

va − z
(vα − vi) + vi(k − n+ i) +

n∑
j=i+1

vj

 dz

By integrating the integral by parts, rearranging terms and substituting Fαi by Equation 8 we obtain Equation
12. �

F Missing proofs from Section 5

Proof of Theorem 43. Consider an instance of the discriminatory auction for k ≥ 2 units and n = 2
bidders. Let d ∈ {1, . . . , k − 1} be an integer to be specified later and let h = d

k < 1. The type of bidder
1 is (1, k) (i.e., deterministically additive with a value of 1 for each of the k units). The type of bidder 2 is
(v2, d) where v2 is drawn from a continuous distribution V2. Both bidders reveal their demands. Bidder 1
bids a mixed strategy according to the distribution B1 supported in [0, h]. We denote the (continuous) CDF
of B1 as F1 and will present its formula in the sequel. Moreover, we denote by f1 its probability density
function.

Given a value v2 drawn from V2, the second bidder bids according to some bidding function b2(v2)
that maps the drawn value v2 to a bid. Therefore, for each value v2, bidder 2 specifies a pure strategy bid.
Nevertheless, due to the randomness of the value distribution V2, bidder 1 competes against mixed strategies
and observes a CDF

F2(x) =
x

1− x
1− h
h

that describes the distribution of the random variable b2(v2) ∈ [0, h] which we denote as B2(V2).

Optimality of bidding function b2(·) Consider the utility maximization problem of bidder 2. For all
values v2 drawn from distribution V2, bidder 2 must, at a Bayes Nash equilibrium, specify a pure bid b2 ∈
[0, h] that maximizes her expected utility, i.e.

max
b2∈[0,h]

E
b1∼B1

[x2(b1, b2)](v2 − b2)⇔ max
b2∈[0,h]

dF1(b2)(v2 − b2),
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and the equivalence is due to the fact that the sole source of competition for bidder 2 is bidder 1. Working
backwards and viewing the value of bidder 2 as a function of her bid (which is the inverse of the bidding
function), and taking first order conditions with respect to b2, we obtain that

v2(b2) = b2 +
F1(b2)

f1(b2)
, b2 ∈ (0, h]. (24)

Hence, a utility-maximizing bidding function satisfies Equation (24).
We now argue that this auction instance is a Bayes Nash Equilibrium. Firstly, neither bidder has an

incentive to bid above h, as bidding h already guarantees them their entire demand. Moreover, lying about
one’s demand is also a weakly dominated strategy for both bidders.

When bidder 1 declares a bid z ∈ [0, h], her utility is

E
v2∼V2

[u1(z, b2(v2))] = (k − d+ dF2(z))(1− z) = k − d

Therefore, since the expected utility of bidder 1 is k−d and is a constant at every subinterval of her support,
bidder 1 has no incentive to deviate unilaterally.

In the case of bidder 2, we have chosen her bidding function b2(v2) to be one that satisfies Equation
(24). Since this bidding function maximizes her utility, it holds that, given a type v2

E
b1∼B1

[x2(b1, b2(v2)](v2 − b2(v2)) ≥ E
b1∼B1

[x2(b1, b
′)](v2 − b′)

for all b′ ∈ [0, h]. Therefore, this instance is a Bayes Nash Equilibrium.
The expected social welfare of this BNE is

E
b2∼B2(V2)

[
E

b1∼B1

[x1(b1, b2) + x2(b1, b2)v2(b2)]

]
=

∫ h

0
f2(z)

(
E

b1∼B1

[x1(b1, z) + x2(b1, z)v2(z)]

)
dz

=

∫ h

0
f2(z)

(
k − E

b1∼B1

[x2(b1, z)](1− v2(z))

)
dz

= k

∫ h

0
f2(z)

(
1− hF1(z)

(
1− z − F1(z)

f1(z)

))
dz

=
k(1− h)

h

∫ h

0

1

(1− z)2

(
1− hF1(z)

(
1− z − F1(z)

f1(z)

))
dz

(25)

The third equality in the above derivation is due to Equation (24). In Equation (25) the social welfare of this
instance is written in terms of h = d

k and the functions F1 and f1.
We have already shown that this instance is in fact a Bayes Nash Equilibrium for any continuous function

F1 supported in [0, h]. The question remains which functionF1 (and consequently f1 as its derivative) should
we choose. Ideally, we would want to pick the continuous and increasing function F1 that minimizes the
expected social welfare as long as F1(h) = 1. This is possible, as Equation (25) is a well-posed problem
of variational calculus, a field of mathematics with a goal of finding functional maxima and minima. Using
such an approach (solving the Euler-Lagrange equation of the problem), we were able to determine that the
function

F1(x) =
W
(
−e−1(1− h)2

)
W(−e−1(1− x)2)

is such a functional minimum for Equation (25).
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Therefore, by replacing F1 and f1 into Equation (25) and subsequently optimizing with respect to h ∈
(0, 1) we obtain a value of approximately 0.8925k for the expected social welfare. Finally we observe that
for all z ∈ [0, h] it holds that

v(z) = z +
F (z)

f(z)
= z + (1− z)(1 +W(−e−1(1− z)2)) ≤ 1

and therefore, the optimal social welfare is k. Thus we have obtained a bound of 1.1204 and the proof
follows. �
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