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Abstract. We study a covering problem motivated by spatial models in
crowdsourcing markets, where tasks are ordered according to some geo-
graphic or temporal criterion. Assuming that each participating bidder
can provide a certain level of contribution for a subset of consecutive
tasks, and that each task has a demand requirement, the goal is to find
a set of bidders of minimum cost, who can meet all the demand con-
straints. Our focus is on truthful mechanisms with approximation guar-
antees against the optimal cost. To this end, we obtain two main results.
The first one, is a truthful mechanism that achieves a bounded approxi-
mation guarantee. This mechanism improves the state of the art, which
is a mechanism with an arbitrarily large factor in worst case. The second
one, concerns a class of instances that generalizes the minimum knapsack
problem. Namely, we consider inputs with a constant number of tasks,
for which we provide a truthful FPTAS. Finally, we also highlight con-
nections of our problem with other well-studied optimization problems,
out of which, we infer further conclusions on its (in)approximability.

1 Introduction

We consider a mechanism design problem, that emerges under certain spatial
models for crowdsourcing and labour matching markets. It is instructive to start
with an example, so as to introduce the main aspects of the model. Imagine a set
of cities, located geographically in a consecutive order, and consider a company
that has opened a store in each of these cities. In Figure 1, we see an instance
with 5 cities, named A to E. The company needs to meet a demand constraint,
i.e., a lower bound on the volume of goods that need to be transported to each
store, based on consumption and future planning. To achieve this goal, it chooses
to hire other firms, or single individuals, that can make deliveries, via a reverse
(procurement) auction (for an exposition on auctions for transportation routes,
see [15]). Suppose that every participating entity, referred to as a bidder or a
worker, can only cover a certain interval of contiguous cities, at a cost that
she specifies, and furthermore, she can only accommodate a certain volume of
goods, assumed to be the same for each city in her declared interval (among
others, dependent on the transportation means that she owns). The problem
boils down to selecting a set of winning bidders who can jointly cover all the
demand constraints at minimum cost, and in a way that prevents the workers
from misreporting their true preferences.
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Fig. 1: An example with 5 tasks (A to E) and 5 workers.

In the crowdsourcing jargon, we can view the store in each city as a task
with a demand requirement. For instance, in labeling/classification tasks, the
demand could correspond to the number of people who should execute the task
in order to acquire a higher confidence on the outcome. In other cases, it could
be interpreted as a (not necessarily integral) volume coverage requirement.

vehicle contribution cost
truck 8 10
van 6 5

pickup 5 4
motorbike 1 2

car 3 4

Table 1: Contribution and costs
of the workers of Figure 1.

Coming back to the example of Figure 1, say
that the demand of cities A to E are given by the
vector (6, 2, 9, 1, 3). The contribution per task, as
well as the cost of the workers are given by Table
1. The interval covered by each worker is visible
in Figure 1. Obviously, hiring all the workers is a
feasible solution. Selecting the workers with the
van, the pickup and the car also forms a feasible
solution since the demands of all cities are indeed
satisfied. Notice that the optimal solution is to

hire the workers with the truck and the motorbike at a total cost of 12.
From an algorithmic viewpoint, there has been already significant progress on

the problem. As it can be easily seen to be NP-hard, the main results on this front
include constant factor approximation algorithms, with further improvements
for special cases. However, in the context of mechanism design, one needs to
consider strategic aspects as well. Bidders may attempt to report higher costs in
order to achieve higher payments, or they can lie about the subset of tasks they
can actually fulfil. It would be therefore desirable to have mechanisms that, on
the one hand, achieve competitive approximation guarantees, and on the other,
deter bidders from misreporting. To our knowledge, the currently best result on
this direction is by [18], where however the approximation ratio of their truthful
mechanism is unbounded in terms of the number of tasks and workers (and
depends on numerical parameters of each instance). It has remained open since
then, if truthfulness can be compatible with bounded approximation guarantees.

Contribution

We focus on truthful mechanisms and their approximation guarantees against
the optimal cost. To this end, we provide two main results. The first one, in
Section 3, is a truthful ∆-approximation mechanism, where ∆ is the maximum
number of workers that are willing to work on the same task (the maximum
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being taken over all tasks). This mechanism, improves significantly the state
of the art, coming to a guarantee that is polynomially bounded in terms of
the input size. Apart from the improvement, we note also that our result is
based on the local-ratio technique from approximation algorithms [4], a technique
that has not been used very often for building truthful mechanisms (for an
exception, see [20]). Moving on, our second result, in Section 4, concerns the class
of instances with a constant number of tasks, which generalizes min-knapsack,
an NP-hard variant of knapsack that corresponds to the single-task case of our
problem. For this class we provide a truthful FPTAS, by mainly exploiting and
adapting the framework of [8]. In doing so, we also identify a flaw in a previous
attempt for designing a truthful FPTAS for min-knapsack. Finally, in Section
5, we discuss some further implications and extensions. Namely, we bring to light
some interesting connections with well-studied optimization problems, related to
unsplittable flow problems and caching. By exploiting known results for these
problems, we rule out a FPTAS for the general case, and also identify a special
case where a PTAS is likely to exist.

Related Work

As already discussed, the work most related to ours is [18], which introduced
the model in the context of crowdsourcing. They provide a truthful optimal
mechanism when the workers have an identical contribution, whereas for the
general case, they present a truthful approximate mechanism, the ratio of which
is dependent on the contribution parameters of the workers. Furthermore, [41]
studies the case of unit-demand tasks and unit-contribution workers and iden-
tifies a truthful optimal mechanism. For the same setting, they also propose a
mechanism when workers can submit multiple bids, for which they attain a log-
arithmic factor. Additionally, in [42] the authors studied the prominent special
case of a single task (min-knapsack) and provided a randomized, truthful-in-
expectation mechanism that achieves an approximation factor of 2.

Regarding the purely algorithmic problem, without the constraint of truth-
fulness, it has appeared under the name of (0-1)resource allocation, and
a 4-approximation was presented in [10]. The currently best known algorithm
achieves a factor of 3, in [33]. For the min-knapsack problem, a PTAS is implied
by [17] and a FPTAS is given in [29].

There are quite a few problems that can be viewed as generalizations of
what we study here, such as general scheduling problem [2], multidimensional
min-knapsack, column restricted covering integer programs [11]. Moreover, sev-
eral problems in discrete optimization can be seen as related variants, but are
neither extensions nor special cases of ours. Indicatively: bandwidth allocation
[12], multiset multicover [7,38], geometric knapsack [23], capacitated network de-
sign [9], admission control [36].

Finally, for general spatio-temporal models appearing in the crowdsourcing
literature, we refer to two recent surveys [25,39], which cover to a big extent the
relevant results.
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2 Preliminaries

In this section, we first define formally the problem that we study, together
with some additional necessary notation. In the sequel, we discuss the relevant
definitions for the design of truthful mechanisms. We note that all the missing
proofs from the following sections can be found in the full version of our work.

Problem Statement

We are interested in the optimization problem defined below. For motivating
applications, we refer the reader to Section 1.2 in [18].

Cost Minimization Interval Cover (cmic): Consider a set of tasks, say
{1, . . . ,m}, that are ordered in a line, and a set of available bidders N =
{1, . . . , n}. We will interchangeably use the term bidder or worker in the se-
quel. An instance of cmic is determined by a tuple (b,q,d), where:

– The vector b = (b1, . . . , bn) is the bidding profile. For each bidder j ∈ N ,
bj = (cj , [sj , fj ]), where [sj , fj ] = Ij is the interval of contiguous tasks {sj , sj+
1, . . . , fj} ⊆ [m], that j is able to contribute to, and cj ∈ R≥0 is the cost
incurred to her, if she is selected to contribute. We can assume positive costs
since workers of zero cost are trivially included in the solution. We often denote
b as (c, I) where c is the cost vector and I is the vector of the intervals.

– The vector q = (q1, . . . , qn) is the contribution vector, so that qj ∈ R>0 denotes
the contribution that bidder j can make to the tasks that belong to [sj , fj ].

– The vector d = (d1, . . . , dm) specifies the demand dj ∈ R>0 of a task j.

The goal is to select a set of bidders S ⊆ N of minimum cost, that satisfies∑
i∈Nj(I)∩S

qi ≥ dj , ∀ j ∈ [m], (1)

where for j ∈ [m], Nj(I) := {i ∈ N | j ∈ [si, fi]}, i.e. is the set of bidders who
can contribute to task j.

The problem belongs to the broad family of problems described by covering
integer programs. It may also seem reminiscent of multicover variants of the
set cover problem on an interval universe. We note however that in cmic,
each worker is allowed to be picked at most once, and moreover, the coverage
requirement is not necessarily integral, which is a substantial difference.

Given a feasible solution S ⊆ N , we refer to its total cost,
∑
i∈S ci, as the

derived social cost. Throughout all our work, we focus on deterministic alloca-
tion algorithms that use a consistent deterministic tie-breaking rule. Given an
instance P = (b,q,d), and an allocation algorithm A, we denote by WA(b) the
set of bidders selected by A, when q,d are clear from the context1. In the same
spirit, we let also C(A,b) :=

∑
i∈WA(b) ci be the social cost derived by algorithm

A on input P . Finally, we use OPT (b) to denote the cost of an optimal solution.

1 It is convenient to highlight the dependence on b, especially when arguing about
truthful mechanisms in the remaining sections.
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Truthful Mechanisms

We move now to the strategic scenario, where bids can be private information.
A mechanism for a reverse auction, like the ones we study here, is a tuple M =
(A,π), consisting of an allocation algorithm A and a payment rule π. Initially,
each bidder j ∈ N is asked to submit a bid bj := (cj , [sj , fj ]), which may differ
from her actual cost and interval. Then, given a bidding profile b = (c, I), the
allocation algorithm A(b) selects the set of winning bidders, i.e., this is a binary
setting where the allocation decision for each bidder is whether she is included in
the solution or not. Finally, the mechanism computes a vector of payments π(b),
so that πi(b) is the amount to be paid to bidder i by the auctioneer. Naturally,
we will consider that non-winning bidders do not receive any payment.

Note that we consider the contribution qj , for j ∈ N , to be public informa-
tion, available to the auctioneer. The reason is that such a parameter could be
estimated by past statistical information on the performance or capacity of the
worker. As an example, we refer to [18], where for labeling tasks, it is explained
how qj can be computed as a function of a worker’s quality (i.e., the probability
for a worker to label correctly), that can be available in a crowdsourcing platform
with rating scores or reviews for the workers.

Our setting corresponds to what is usually referred to as a pseudo-2-
parameter environment (or almost-single-parameter [5]), since each bidder has
two types of private information, the monetary cost and the interval. And in
particular, our model can be seen as a special case of single-minded bidders,
who are interested in a single subset each, but for reverse auctions. As in [18],
when the true type of a worker i is (ci, [si, ti]), and she declares her true interval
or any non-empty subset of it, then she enjoys a utility of πi−ci, if she is selected
as a winner by the mechanism (with πi being her payment). If she declares any
other interval that contains any task j /∈ [si, ti], and she is selected as a winner,
then the bidder has a utility of −∞, or equivalently has an infinite cost. This
simply models the fact that the worker may not be capable of executing or does
not desire to be assigned to any task outside her true interval (and therefore
would have no incentive for such deviations).

The previous discussion allows us to exploit the sufficient conditions proposed
by [31] (for forward auctions), to obtain truthful mechanisms, as an extension
of the seminal result by [34]. For reverse auctions, the same framework is also
applicable, implying that as long as an allocation algorithm is exact (each se-
lected bidder is assigned her declared interval), the crucial property we need to
enforce is monotonicity. Monotonicity of an algorithm means that if a winning
bidder declares a more competitive bid, she should still remain a winner. To be
more precise, we define first the following partial order on possible bids.

Definition 1. Let bi = (ci, [si, fi]) and b′i = (c′i, [s
′
i, f
′
i ]) be two bids of bidder

i ∈ N . We say that b′i � bi, if ci ≥ c′i and [si, fi] ⊆ [s′i, f
′
i ].

Definition 2. An allocation algorithm A is monotone if for every bidding profile
b, for any bidder i ∈ WA(b) and any bid b′i � bi, it holds that i ∈ WA(b′i,b−i).
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Theorem 1 (cf. [31], Theorem 9.6). In settings with single-minded bidders,
given a monotone and exact algorithm A, there exists an efficiently computable
payment rule π, such that M = (A,π) is a truthful mechanism.

Finally, we stress that all our proposed algorithms are exact by construction,
which means that bidders will only be assigned to the set of tasks which they
asked for, as in [8], and hence we only need to care about monotonicity.

3 An Improved Truthful Approximation Mechanism

As already stated in Section 1, the currently best algorithm for cmic has an
approximation ratio of 3 [33], based on refining the 4-approximation algorithm
by [10]. However, as the next proposition shows, these algorithms are not mono-
tone2. More generally, it has been noted in [18] that primal-dual algorithms with
a “delete phase” at the end, are typically non-monotone, without, however, pro-
viding an example. For the sake of completeness, in the full version of our work,
we provide a concrete example that proves the following statement:

Proposition 1. The current state of the art constant factor approximation al-
gorithms for cmic by [10,33] are not monotone.

So far, the only truthful mechanism that has been identified [18], achieves
an approximation ratio of 2 · maxi∈N {qi}. Note that this approximation ratio
is dependent on the contribution parameters of the workers, which can become
arbitrarily large, and not bounded by any function of n and m. The main result
of this section is the following theorem, established via a greedy, local-ratio
algorithm, which reduces the gap between truthful and non-truthful mecha-
nisms. In particular, this gap is related to the maximum number of workers
that contribute to any given task, which for an instance ((c, I),q,d) of cmic,
is ∆(I) := maxj=1,...,m |Nj(I)|. We denote it simply by ∆ when I is clear from
context. Obviously, ∆ is always upper bounded by the number of workers, n.

Theorem 2. There exists a truthful, polynomial-time mechanism, that achieves
a ∆-approximation for the cmic problem.

The rest of the section is devoted to the proof of Theorem 2. The main
component of the proof is an approximation-preserving reduction to a particular
job scheduling problem for a single machine [3], defined as follows:

Loss Minimization Interval Scheduling (lmis): We are given a limited resource
whose amount may vary over a time period, which WLOG, is defined by the
integral time instants {1, . . . ,m}. We are also given a set of activities J =
{1, . . . , n}, each of which requires the utilization of the resource, for an interval
of time instants. An instance of lmis is determined by a tuple (p,T, r,D), where:

2 For a similar reason, the 40-approximation for cmic by [11], which uses as a subrou-
tine a primal-dual algorithm involving a “delete phase”, is non-monotone as well.
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– The vector p = (p1, . . . , pn) specifies a penalty pj ∈ R>0, for each activity
j ∈ J , reflecting the cost that is incurred by not scheduling the activity.

– For each activity j ∈ J , we are given an interval3 Tj = [sj , fj ], such that
sj , fj ∈ {1, . . . ,m} are the start and finish times of j respectively. Let T =
(T1, . . . , Tn), be the vector of all activity intervals.

– The vector r contains, for each activity j ∈ J , the width rj ∈ R>0, reflecting
how much resource the activity requires, i.e., this means that activity j requires
rj units of resource at every integral time instant of its interval Tj .

– The vector D = (D1, . . . , Dm) specifies the amount of available resource Di ∈
R>0, at each integral time instant i ∈ [m].

Let Ji(T) := {j ∈ J | i ∈ Tj}. The goal in lmis is to select a set of activities
S ⊆ J to schedule, that meet the resource constraint∑

j∈S∩Ji(T)

rj ≤ Di, i = 1, . . . ,m, (2)

and such that
∑
j∈J\S pj is minimized, i.e., we want to minimize the sum of the

penalties for the non-scheduled activities.

Our work highlights an interesting connection between lmis and cmic.
This can be seen via the reduction provided by algorithm Â below, where
for an instance ((c, I),q,d), we let Q(I) = (Q1(I), . . . , Qm(I)) and Qj(I) :=∑
i∈Nj(I)

qi,∀j ∈ [m].

Algorithm 1: Â(b)

B Input: A bidding profile b = (c, I) of a cmic instance ((c, I),q,d)

1 Construct the lmis instance (p,T, r,D) = (c, I,q,Q(I)− d), with J = N .
2 Run an approximation algorithm for the lmis instance, and let S be the set of

scheduled activities.
3 return N \ S

Theorem 3. Algorithm Â converts any α-approximation algorithm for lmis to
an α-approximation algorithm for cmic.

Theorem 3 is based on the lemma below, which shows the connection between
the feasible solutions of the two problems.

Lemma 1. Consider a cmic instance P = ((c, I),q,d). Let also P ′ be the lmis
instance defined by (p,T, r,D) = (c, I,q,Q(I) − d), with J = N . Then, for
every feasible solution S of P , it holds that J \ S is a feasible solution for P ′

with the same cost, and vice versa.

3 Originally, the problem was defined using a semi-closed interval for each activity,
but it is easy to see that defining it using a closed one instead, is equivalent and
more convenient for our purposes.
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Approximation Guarantee and Monotonicity of Â

If we only cared about the approximation ratio of Â, it would suffice to use as
a black box any algorithm for lmis. And in fact, the best known algorithm for
lmis achieves a 4-approximation, and was obtained in [3], using the local-ratio
framework. Plugging in this algorithm however, does not ensure that we will end
up with a truthful mechanism for cmic. Instead, we will consider an appropriate
modification of the algorithm by [3], which enforces monotonicity of Â, but at the
price of a higher approximation ratio. This is presented as Algorithm 2 below.

We introduce first a notion that will be useful both for the statement of
Algorithm 2 and for our analysis. Consider an instance (p,T, r,D) of lmis.
Given a set of jobs S ⊆ J , and a time instant i = 1, . . . ,m, we define

Ri(S,T,D) :=
∑

`∈S∩Ji(T)

r` −Di.

The quantity Ri(S,T,D) measures how much (if at all), the resource constraint
of Equation (2), for the i-th time instant is violated when scheduling all the
activities in S. Accordingly, define R∗(S,T,D) := maxi=1,...,mRi(S,T,D). Note
that a schedule S is feasible if and only if R∗(S,T,D) ≤ 0.

Algorithm 2 constructs a feasible schedule S as follows: Initially, it checks if
the entire set of activities S = J constitutes a feasible schedule. If not, the algo-
rithm iteratively removes one activity per iteration from S, in a greedy fashion,
until S becomes feasible. The algorithm determines the time instant t∗ with the
most violated feasibility constraint, by computing R∗(S,T,D), and considers all
activities from S whose interval contains t∗. Then, it removes from S one of these
activities that minimizes a certain ratio, dependent on the current penalties and
resource requirements, while it simultaneously decreases the penalty of all other
activities that contain t∗.

Algorithm 2 LMIS-LR(p,T, r,D)

B Input: An instance (p,T, r,D) of lmis

1 Initialize S = J , k = 0, and pk = (pi,k)i∈[n] = p.
2 while R∗(S,T,D) > 0 do
3 Let t∗ ∈ [m] be a maximizer of R∗(S,T,D).
4 Sk = S ∩ Jt∗(T)

5 εk = min
i∈Sk

pi,k
min{R∗(S,T,D), ri}

6 For i = 1, . . . ,m let

pi,k+1 =

®
pi,k − εk min{R∗(S,T,D), ri}, if i ∈ Sk,
pi,k, o/w.

7 Let j∗ ∈ Sk be a minimizer of εk.
8 Set S = S \ {j∗}, and k = k + 1.

9 return S
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Remark 1. A variation of Algorithm 2 for lmis is stated in [3]. The main differ-
ence is that the algorithm of [3] has an additional step to ensure that the solution
returned is maximal. The extra step helps in improving the approximation ratio,
but it destroys the hope for monotonicity of Â. This can be demonstrated using
the same example that we used for the primal-dual algorithms of Proposition 1.
Furthermore, we note that the algorithm of [3] is presented using the local-ratio
jargon. We have chosen to present Algorithm 2 in a self-contained way for ease
of exposition but for its analysis, we do make use of the local-ratio framework.

Theorem 4. Algorithm 2 achieves a ∆-approximation for the lmis problem,
where ∆ = maxj=1,...,m |Nj(I)|, and the analysis of its approximation is tight.

It remains to be shown that Â, with Algorithm 2 as a subroutine, becomes
a monotone allocation algorithm for cmic. For establishing the monotonicity,
according to Definition 2, we have to examine the ways in which a winning
worker i can deviate from the truth with a bid b′i � bi, where bi is her initial
bid. By Definition 1, this means that under b′i, a lower or equal cost and a larger

or the same interval are declared, compared to bi. But to argue about Â, we
first have to understand how such deviations from the truth affect the outcome
of Algorithm 2, when it is called by Â. Lowering the cost at a cmic instance
corresponds to lowering the penalty of an activity at the lmis instance that Â
constructs. The lemma below examines precisely what happens when we lower
the penalty of a non-scheduled activity in a lmis instance.

Lemma 2. For an instance (p,T, r,D) of lmis, let S be the schedule returned
by Algorithm 2, and j ∈ J \ S. Then, for any p′j ≤ pj, it holds that j ∈ J \ S′,
where S′ is the schedule returned by Algorithm 2 for ((p′j ,p−j),T, r,D).

The next lemma examines enlarging the interval of an activity. This needs
a different argument from the previous lemma because the deviation causes an
activity to participate in more time instants.

Lemma 3. For an instance (p,T, r,D) of lmis, let S be a schedule returned
by Algorithm 2 and j ∈ J \ S. For any interval T ′j ⊇ Tj, consider the instance
P ′ = (p, (T ′j ,T−j), r,D

′), where D′ = (D′1, . . . , D
′
m) such that:

D′` =

®
D` + rj , if ` ∈ T ′j \ Tj ,
D`, o/w.

Then, j ∈ J \ S′, where S′ is the schedule returned by Algorithm 2 for P ′.

Combining Lemma 2 and Lemma 3 we get the following:

Theorem 5. Algorithm Â is monotone, when using Algorithm 2 as a black box
for solving lmis.

Proof. Fix a bidding profile b and a winning worker i ∈ WÂ(b). Let bi =
(ci, [si, fi]), and consider an arbitrary deviation of i, say b′′i = (c′i, [s

′
i, f
′
i ]), such
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that b′′i � bi. We need to show that i ∈ WÂ(b′′i ,b−i) and we will do this in
two steps. First, we consider the deviation b′i = (c′i, [si, fi]). Since b′i differs from
bi only with respect to the declared cost and the bids of the remaining workers
remain the same, we can directly use Lemma 2 to conclude that i ∈ WÂ(b′i,b−i).
Having established that i is still a winner under (b′i,b−i), consider now the
deviation from b′i to b′′i . Note that (b′′i ,b−i) differs from (b′i,b−i) only with respect

to the declared interval of bidder i. Recall also that Algorithm Â calls Algorithm
2 with input the tuple (c, I,q,Q(I)− d). This means that under b′′i , the vector
Q(I) − d in the constructed lmis instance changes only for time instants that
belong to [s′i, f

′
i ]\ [si, fi] (where we simply add qi). But then, this can be handled

by Lemma 3, and obtain that i ∈ WÂ(b′′i ,b−i).

To conclude, it is trivial that Algorithm Â runs in polynomial time, when
using Algorithm 2 for solving lmis, and hence, the monotonicity of Â, together
with Theorems 3 and 4 complete the proof of Theorem 2.

4 A Truthful FPTAS for a Small Number of Tasks

At what follows, we investigate whether we can have truthful mechanisms with
a better approximation ratio for special cases of restricted problem size. An in-
stance of cmic with a constant number of workers can be optimally solved in
polynomial time by a brute force algorithm, which, together with the VCG pay-
ment scheme, results in a truthful mechanism. On the other hand, the story is
different when we have a small number of tasks, since cmic is NP-hard even for
one task [18]. Building upon this negative result, we provide a truthful mech-
anism that achieves the best possible approximation factor, for the case of a
constant number of tasks, and our main result of this section is the following:

Theorem 6. There exists a truthful FPTAS for cmic, when the number of tasks
is constant.

We would like first to pay attention to the special case of a single task,
which corresponds to the min-knapsack problem, the minimization version of
knapsack, where items have costs (instead of values) and there is a covering
requirement (instead of a capacity constraint) for the selected items. The work
of [8], which proposes a truthful FPTAS for the classic maximization version of
knapsack, claims (without providing a proof) that the analogous result holds
for min-knapsack too. To our knowledge, the only published work that explic-
itly attempts to extend [8] and describe a truthful FPTAS for min-knapsack is
[13]. However, we found that the analysis of truthfulness there is flawed and we
refer to our full version for a counterexample, establishing the following claim.

Proposition 2. The FPTAS for min-knapsack, proposed by [13], is not
monotone.

Therefore, our Theorem 6 helps to resolve any potential ambiguities for min-
knapsack. Finally, for two or more tasks, we are not aware of any truthful
mechanism attaining any bound better than the one provided by Theorem 2.
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Remark 2. As in other approaches for constructing a truthful FPTAS, e.g. [8],
we also make the assumption from here onwards, that ci ≥ 1 for every worker
i, i.e., the workers will not be allowed to declare a cost lower than 1. In the full
version of our work, we prove that we can adjust the assumption to ci ≥ δ for
any arbitrarily small δ, but for convenience, here we stick to δ = 1.

Furthermore, we bring in some additional notation that we use in this section.
Given a bidding profile b, let csum(b) :=

∑
i∈N ci. Similarly let cmin(b) (resp.

cmax(b)), be the minimum (resp. maximum) cost by the bidders.

4.1 A Pseudopolynomial Dynamic Programming Algorithm

The first step towards designing the FPTAS, is a pseudopolynomial dynamic
programming algorithm that returns the optimal solution for the case of a con-
stant number of tasks. For simplicity, we focus on describing the algorithm for
the case of two tasks. The generalization is rather obvious (and discussed briefly
at the end of this subsection).

Given an instance with two tasks, let d1, d2 be the demand requirements of
the tasks. Note that N can be partitioned into three sets, W0,W1,W2, since
we can have at most three types of workers: W0 is the set of workers who can
contribute to both tasks, and for ` ∈ {1, 2}, W` is the set of workers who are
capable of contributing only to task `.

We define a 3-dimensional matrix Q[`, i, c], where for ` = 0, 1, 2, for i =
0, 1, . . . n, and for c = 0, 1, . . . , csum(b), Q[`, i, c] denotes the maximum possible
contribution that can be jointly achieved by any set of workers in W`∩{1, . . . , i}
with a total cost of exactly c. For our purposes, we assume4 that for i ∈ [n], each
ci is an integer, so that c also takes only integral values. Our algorithm is based
on computing the values of the cells of Q and we claim that this can be done by
exploiting the following recursive relation:

Q[`, i, c] =


0, if i = 0

Q[`, i− 1, c], if i > 0 and either i /∈W` or ci > c

max{Q[`, i− 1, c], Q[`, i− 1, c− ci] + qi]}, o/w

(3)

Observe that for a feasible solution S, the workers who contribute to the
demand of task 1 (resp. 2) are those from S ∩W0 and S ∩W1 (resp. S ∩W0 and
S ∩W2). Hence, for ` ∈ {1, 2}, it should hold that

∑
j∈S∩W0

qj +
∑
j∈S∩W`

qj ≥
d`. Our algorithm then can work as follows: After computing the values of Q,
according to Equation (3), return the set of workers that minimize c(0)+c(1)+c(2),
subject to Q[0, n, c(0)] + Q[`, n, c(`)] ≥ d`, for ` ∈ {1, 2}. This can be done by
enumerating all possible options, for breaking down the final cost as a sum of 3
values, c(0), c(1) and c(2). The formal statement can be found below.

4 It becomes clear in the next subsection, that the dynamic programming procedure
is only needed for integral cost values.
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Algorithm 3: DP(b) (presented for two tasks)

B Input: A bidding profile b = (c, I) of a cmic instance (b,q,d) with m = 2

1 for ` ∈ {0, 1, 2} do
2 for i ∈ {0, 1, . . . , n} do
3 for c ∈ {0, 1, . . . , csum(b)} do
4 Compute Q[`, i, c] using Equation (3)

5 return the set of workers that minimize c(0) + c(1) + c(2), s.t.

Q[0, n, c(0)] +Q[`, n, c(`)] ≥ d`, ∀` ∈ {1, 2} (or +∞, if (b,q,d) has no solution)

The optimality of the DP algorithm is straightforward from the preceding
discussion. Furthermore, its running time is pseudopolynomial, since the size of
the table Q is 3 · (|N | + 1) · (csum(b) + 1) and to find the optimal solution we

need to check at most
(
csum(b)

3

)
different combinations for the decomposition

of the total cost in three terms, as described earlier. It is easy to extend these
ideas, for more tasks given the interval structure of the problem, i.e., the first
dimension of Q will have a range of O(m2) and the enumeration part of the
algorithm will require an order of

(
csum

m2

)
steps. Finally, we note that since this is

an optimal mechanism and we use a deterministic, consistent tie-breaking rule,
it will trivially be monotone.

Henceforth, we will be referring to this pseudopolynomial dynamic program-
ming algorithm for any constant number of tasks, as the DP algorithm.

Theorem 7. Given an instance of cmic on a profile b, with a constant number
of tasks and integer costs, Algorithm DP(b) is optimal, monotone, and runs in
pseudopolynomial time, i.e. polynomial in the input size and in csum.

4.2 The FPTAS

In order to convert the DP algorithm to a truthful FPTAS, we adapt the frame-
work of [8]. To that end, we define, for every integer k, an algorithm Ak(b, ε),
that uses the DP algorithm as a subroutine, on a subset of the initial set of
bidders, with rounded costs, as follows:

Algorithm 4: Ak(b, ε)

B Input: A bidding profile b = (c, I) of a cmic instance (b,q,d), ε ∈ (0, 1)

Let Lk(c) = {i ∈ N : ci ≤ 2k+1}
1 ak = n

ε2k
.

2 for i ∈ Lk(c) do
3 c̄i = dak · cie
4 b̄ = (c̄i, [si, fi])i∈Lk(c)

5 return DP(b̄)

Lemma 4. Let 0 < ε < 1. For a bidding profile b and k ≥ 0, the algo-
rithm Ak(b, ε) runs in time polynomial in the input size and in 1

ε , and if
2k ≤ OPT(b) < 2k+1, it computes a solution of cost at most (1 + ε)OPT(b).
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Using Lemma 4, we can achieve the desired approximation by checking all
possible values for k. However, to provide a polynomial-time mechanism, we
can only test polynomially many such values, and hope that we compute the
same outcome as if we were able to test all such algorithms. We will show that
Algorithm 5, that tests all values up to a certain threshold, is what we need.

Algorithm 5: AFPTAS(b, ε)

B Input: A bidding profile b = (c, I) of a cmic instance ((c, I),q,d), ε ∈ (0, 1)

1 for k = 0, . . . , dlog
Ä
ncmax(b)

ε

ä
e do

2 Run Ak(b, ε) and store the winning set and its cost.

3 return the set of workers that achieve the minimum cost among the above,
breaking ties in favor of the algorithm with the lowest index

Let k∗(b) := dlog
Ä
ncmax(b)

ε

ä
e (or simply k∗ when the bidding profile is clear

from the context). To see that the algorithm is well-defined, recall that cmax(b) ≥
1 and since also n

ε ≥ 1, we have that k∗ ≥ 0. To establish that this is indeed a
FPTAS, we prove in the following lemma that one cannot find a better solution
by running an algorithm Ak for a value of k higher than k∗. In combination with
Lemma 4, this directly establishes that AFPTAS is a FPTAS for cmic.

Lemma 5. Given an instance of cmic and an ε ∈ (0, 1), it holds thatWAk(b) =
WAk∗ (b), for every k > k∗(b).

Monotonicity of AFPTAS

To establish monotonicity, we will make use of the following operator:

Definition 3. Let A = {A0, A1, . . . } be the set of all allocation algorithms Ak.
For a profile b and a finite collection of algorithms S ⊆ A, let MIN(S,b) :=
arg minA∈S C(A,b), with ties broken in favor of the lowest index.

Given a bidding profile b, the algorithm AFPTAS can be expressed as
MIN{A0, . . . , Ak∗(b)}. Hence, the next step is to determine when is the MIN
operator monotone. The framework of [8] defines a set of sufficient conditions,
for maximization objectives. We adapt these properties below, and we note that
they are sufficient conditions for minimization problems as well.

Definition 4. A monotone allocation algorithm A is bitonic w.r.t. the social
cost function C if for any bidding profile b and any worker i, the following hold:

1. i ∈ WA(b)⇒ C(A,b) ≥ C(A, (b′i,b−i)) ∀b′i � bi
2. i 6∈ WA(b)⇒ C(A,b) ≥ C(A, (b′i,b−i)) ∀b′i � bi

Lemma 6. For k ≥ 0, Algorithm 4 is monotone and bitonic w.r.t. the social
cost function C.

Lemma 6 will be used in conjunction with the following Lemma.
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Lemma 7. (implied by [8]) For a bidding profile b, MIN({A0, . . . , A`},b) is
monotone if A0, . . . , A` are monotone algorithms that are additionally bitonic
w.r.t. the social cost function C.

Before we proceed, we would like to comment on a subtle point regarding the
MIN operator. We stress that the set of algorithms Ak that are called by AFPTAS,
depends on the input profile b. There is no a priori fixed set of algorithms that
are run in every profile, but instead, this is determined by the quantity k∗(b). As
a result, Lemma 7 does not suffice on its own. For the monotonicity of AFPTAS,
we also need to consider the case that a winning worker declares a lower cost
that changes cmax(b), and decreases the number of algorithms that AFPTAS runs.
This is where Lemma 5 comes to rescue, as explained in the proof of Theorem
8, and this is where the flaw in [13] is located (i.e., the algorithm of [13] does
not perform enough iterations).

Given the above discussion, by performing a suitable case analysis and by
using Lemmas 6 and 7, we can prove the following theorem, which also completes
the proof of Theorem 6 and concludes this section.

Theorem 8. For the domain of bidding profiles b, such that cmin(b) ≥ 1, the
algorithm AFPTAS is monotone.

5 Further Implications and Extensions

Apart from truthful mechanisms, it would be interesting to also consider cmic
from the purely algorithmic angle. In particular, the existence of a FPTAS (or
other types of approximation schemes) could be possible beyond the case studied
in Section 4. Furthermore, it is natural to examine whether the mechanisms
presented in the previous sections could be used in more general crowdsourcing
scenarios. The following subsections shed more light towards these two questions.

5.1 Relation to Unsplittable Flow Problems and (In)approximability

At what follows, we first establish a connection between cmic and other relevant
algorithmic problems, namely ufp, weighted ufp-cover, and fault-caching.
These problems concern (a) the selection of subpaths of a path-graph so as to
satisfy a demand (resp. capacity) constraint on every edge, at a minimum (resp.
maximum) total cost and (b) the minimization of the total cache misses in a
fault model with a cache of fixed size and requests for non-uniform size pages.
We refer to the full version of the work for the definitions of the problems.
Such connections are interesting in their own right, and are summarized in the
following theorem.

Theorem 9. cmic is equivalent to weighted ufp-cover. Furthermore ufp and
fault-caching are special cases of cmic.
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We can now exploit some known results about these problems and obtain
analogous implications for cmic. The following table lists the most impor-
tant results that concern the polynomial solvability and the approximability
of (weighted) ufp-cover, ufp and fault-caching that also apply for cmic,
due to Theorem 9. As an example, we can now rule out a FPTAS for the general
case of cmic (and in fact for its simpler cases, as stated in the first two lines
of Table 2), unless P=NP. We note that before our work, there were no results
about the hardness of cmic, other than the obvious NP-hardness result in [18].
We comment further on Table 2 in Section 6.

Restriction Result for cmic Reduction

di = 1 ∀i ∈ [m]
qi ∈ {1, 2, 3} ∀i ∈ N
ci ∈ Z

strongly NP-hard
[40]
=⇒ @ FPTAS? ufp [6]

di = 1 ∀i ∈ [m]
ci = 1 ∀i ∈ N strongly NP-hard

[40]
=⇒ @ FPTAS? fault-caching [14]

ci = 1 ∀i ∈ N W[1]-hard
[21]
=⇒ @ EPTAS� ufp-cover [16]

qi : quasi-poly ∀i ∈ N QPTAS
[1]

=⇒ @ APX-hardness♦ weighted ufp-cover [26]

Table 2: Results concerning the (in)approximability of cmic implied by Theorem 9
together with existing works on ufp-cover, ufp and fault-caching. We have used
the symbols ?,�,♦ to denote the complexity assumptions P 6= NP, W[1] 6= FPT and
QP 6= NP respectively. For the W[1]-hardness result, it is assumed that ufp-cover is
parameterized by the cardinality of the optimal solution.

5.2 Generalization to Non-Interval Structures

The focus of our work has been largely on highlighting the difference on the
approximation ratio between truthful and non-truthful algorithms. We conclude
our work by showing that one can get tighter results, when moving to more gen-
eral scenarios. A direct generalization of cmic is to drop the linear arrangement
of the tasks, and allow each worker j ∈ N to declare an arbitrary subset of
tasks Ij ⊆ [m]. The rest of the input remains the same (costs, contributions and
demands), and we refer to this problem as Cost Minimization Demand Cover
(cmdc). Notice that cmdc with qi = 1 for every worker i, and dj = 1 for every
task j, is nothing but the famous set cover problem.

Further extensions of cmdc have been studied under various names in a series
of works regarding covering IPs (e.g., [28,38]) and approximation algorithms
that match the factor of Algorithm 1 exist (e.g. [9,22,30,37]). However, the focus
of these works was not about monotonicity and it is unclear if any of these
algorithms are monotone (in fact some of them are certainly non-monotone).

Towards obtaining a monotone algorithm, a careful inspection of the proofs
of Section 3, suffices to deduce that Algorithm 1 can be used for this more gen-
eral setting as well (after defining first the appropriate generalization of lmis)
and it continues to yield the ∆ factor for cmdc. Furthermore, under this setting,
Algorithm 1 yields essentially a tight result, according to the following Proposi-
tion. The proof of Proposition 3 is straightforward due to the hardness results
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for k-uniform hypergraph vertex cover [27,19], which is a special case of
set cover, and therefore a special case of cmdc.

Proposition 3. For the class of instances where ∆ is constant, cmdc is ∆−1−ε
inapproximable, unless P = NP , and ∆−ε inapproximable assuming the Unique
Games Conjecture.

Finally, we note that the algorithms of Section 4 can in principle also be
applied for cmdc with no loss in the approximation factor, but at the expense
of a much higher running time (doubly exponential in m, which still remains
polynomial, as long as the number of tasks is a constant).

6 Discussion and Open Problems

From a mechanism design viewpoint, the most important question for future
research is to design truthful mechanisms with better approximation guarantees
for cmic, as there is still a large gap between the non-truthful 3-approximation
and our truthful ∆-approximation of Section 3. Moreover, exploring the approx-
imability of well-motivated special cases of cmic, other than the restriction on
a constant number of tasks that we examined in Section 4, is also an intriguing
topic (Table 2 in Section 5.1 suggests such possible restrictions). In the context
of crowdsourcing, some of these special cases are also meaningful to study in a
2-dimensional model, where workers can cover circular areas of a given radius, or
other geometric shapes. Apart from positive results, we believe it is very interest-
ing to investigate the existence of lower bounds on the worst case performance of
polynomial time truthful mechanisms. After all, it is conceivable that there may
be a strict separation on the approximability by monotone and non-monotone
algorithms, as, e.g., for combinatorial public project problems [35].

From a purely algorithmic viewpoint, we would like to point out some in-
teresting open-problems for cmic, that emerge from the results of Table 2. In
particular, it has been known by [18], that we have polynomial solvability when
all the workers have the same contribution parameter. On the contrary, by the
first row of Table 2, we have a hardness result when the workers can be par-
titioned in three distinct groups by their contribution. It still remains open to
determine what happens when we have two distinct groups for the contribution
of the workers. Interestingly the last row of Table 2 implies that the existence of
a PTAS is likely (at least for the case of quasi-polynomially bounded contribu-
tions) and, yet, such a PTAS still remains to be found. Finally, even though the
problem is W[1]-hard (parameterized by the number of workers in the optimal
solution) for unit costs, it belongs to FPT for unit costs and integral numerical
values [32,24], and hence an EPTAS may well exist for this case.
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