Tight Welfare Guarantees for Pure Nash Equilibria of the Uniform Price Auction

Uniform Price Auction

Allocate k units of an item to a set of n bidders (k highest marginal bids win). Charge each winner the highest losing bid per unit won.

$v_{1}=(7,1,1,0)$
$b_{1}=(5,3,1,0)$

Uniform price $=2$
$\mathrm{v}_{2}=(10,6,1,1)$
$u_{1}=7+1-2 * 2=4$
$\mathrm{b}_{2}=(6,4,2,0)$
$\mathrm{u}_{2}=10+6-2^{*} 2=12$

Generalization of Second Price Auction [1] but not Vickrey. Employed in real-life settings such as bond auctions and online brokers.

Formally:

The auctioneer receives bids in one of the following two ways:
$>$ standard bidding: bidder i submits k-non increasing bids, i.e. $b_{i 1} \geq b_{i 2} \geq \cdots b_{i k}$
$>$ uniform bidding: bidder i submits a single per-unit bid and a quota
Given a profile $\boldsymbol{b}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right)$

- Allocation $\boldsymbol{x}(\boldsymbol{b})=\left(x_{1}(\boldsymbol{b}), x_{2}(\boldsymbol{b}), \ldots, x_{n}(\boldsymbol{b})\right)$ where: $x_{i}(\boldsymbol{b})=$ number of units bidder i is allocated
- Bidder i pays $x_{i}(\boldsymbol{b}) \mathrm{p}(\boldsymbol{b})$ where $\mathrm{p}(\boldsymbol{b})$ is the highest losing bid.

Bidder i has a submodular valuation expressed as a non-increasing vector of marginal values, i.e. $\mathbf{v}_{\mathbf{i}}=\left(m_{i 1}, m_{i 2}, \ldots, m_{i n}\right)$ where:
$m_{i j}=$ extra value derived by agent i for getting item j
Given a profile \boldsymbol{b}, the utility of bidder i is
$u_{i}(\boldsymbol{b})=\sum_{j=1}^{x_{i}(\boldsymbol{b})} m_{i j}-x_{i}(\boldsymbol{b}) p(\boldsymbol{b})$

Pure Nash Equilibria and No-Overbidding

A bidding profile $\mathbf{b}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right)$ is a Pure Nash Equilibrium if for every bidder i and every $\boldsymbol{b}_{i}{ }^{\prime}$:

$$
u_{i}(\boldsymbol{b}) \geq u_{i}\left(b_{i}^{\prime}, \boldsymbol{b}_{-i}\right)
$$

We assume bidders will not submit bids that may result in negative utility, i.e. for a given profile \boldsymbol{b}, every bidder i and any $l \leq k$ it holds

$$
\sum_{j=1}^{l} b_{i j} \leq \sum_{j=1}^{l} m_{i j}
$$

Inefficiency of Non-Overbidding Equilibria

Social Welfare: For a given profile \mathbf{b} the Utilitarian Social Welfare is

$$
S W(\boldsymbol{b})=\sum_{i=1}^{n} \sum_{j=1}^{x_{i}(\boldsymbol{b})} m_{i j}
$$

Price of Anarchy of no-overbidding Pure Nash Equilibria:

$$
P o A=\sup _{\boldsymbol{b}} \frac{S W(O P T)}{S W(\boldsymbol{b})}
$$

In a Uniform Price Auction, bidders have incentives to shade their bids and these actions may result to equilibria. Here is an inefficient equilibrium:

Demand Reduction Effect [2]

	$v_{1}=(1 / 3,0,0)$ $b_{1}=(1 / 3,0,0)$
$a_{2}=(1,1,1)$	
$b_{2}=(1,1,0)$	

Uniform price $=0$

- $\mathbf{b}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)$ is an equilibrium
- Revealing true profile for bidder 2 results in a price that is too high for her!

$$
\begin{array}{ll}
\mathrm{SW}(\mathrm{OPT})=3 \\
\mathrm{SW}(\mathbf{b})=2+1 / 3
\end{array} \quad \frac{S W(O P T)}{S W(\boldsymbol{b})}=\frac{9}{7} \approx 1.28
$$

Can it get worse? Previously known [3] PoA lower-bound $2-\frac{1}{k}$.
Main Result: The Price of Anarchy of non-overbidding pure Nash equilibria of the Uniform Price Auction with submodular bidders is

$$
\frac{\left.2+\mathcal{W}_{0}\left(-e^{-2}\right)\right)}{\left.1+\mathcal{W}_{0}\left(-e^{-2}\right)\right)} \approx 2.188
$$

where \mathcal{W}_{0} is the first branch of the Lambert function.

Upper Bound: Not a smoothness proof!

Lower Bound Construction: For $k=11$ consider the profile

$$
\begin{aligned}
& v_{1}=(5.942,0,0,0,0,0,0,0,0,0,0) \\
& b_{1}=(8 / 10,8 / 10,7 / 9,6 / 8,5 / 7,4 / 6,3 / 5,2 / 4,1 / 3,0,0) \\
& v_{2}=(1,1,1,1,1,1,1,1,1,1,0) \\
& b_{2}=(1,1,0,0,0,0,0,0,0,0,0)
\end{aligned}
$$

- Bidder 1 bids an harmonic series of marginal bids that sum to $\sum_{j=1}^{8} \frac{j}{j+2}+\frac{8}{10} \approx 5.942$
- Should bidder 2 compete for more than 2 units, she will only introduce a uniform price which leaves her indifferent in terms of utility.
, SW(OPT) / SW(b) = 2.007
, For large values of $\mathrm{k}(>250)$ we approach 2.188 with this construction.

References

[1] M. Friedman. A Program for Monetary Stability. Fordham University Press, New York (1960)
[2] L. Ausubel, P. Cramton. Demand reduction and inefficiency in multi-unit auctions. Technical report, University of Maryland (2002).
[3] de Keijzer, B, Markakis, E., Schäfer, G., Telelis, O.: Inefficiency of standard multi-unit auctions. ESA 2013, Springer, Berlin. Extended version available as arXiv:1303.1646 (2013)

